Luftreinhalteplan 2011 bis 2017 für Berlin
Luftreinhalteplan 2011 bis 2017 für Berlin
Inhalt

Inhalt ... 4
Vorwort .. 7
Kurzfassung ... 9

1 Anlass und Grundlagen des Luftreinhalteplans .. 20
1.1 Anlass des Luftreinhalteplans: Überschreitung von Luftqualitätsgrenzwerten und daraus resultierende Gefahren für Gesundheit und Umwelt .. 20
1.2 Rechtsgrundlagen ... 21
1.3 Möglichkeit der Verlängerung der Einhaltefrist der Grenzwerte ... 24
1.4 Plangebiet ... 25
1.5 Zuständige Behörde .. 25
1.6 Umweltverträglichkeitsprüfung ... 25
1.7 Öffentlichkeitsbeteiligung .. 26
1.8 Inkrafttreten ... 26

2 Allgemeine Informationen .. 27
2.1 Basisdaten .. 27
2.2 Topographie ... 29
2.3 Klima und meteorologische Verhältnisse ... 29
2.4 Flächennutzung .. 34
2.5 Entwicklung der Raumstruktur ... 35
2.6 Entwicklung des Verkehrs in Berlin ... 36
2.6.1 Verkehrsinfrastruktur .. 36
2.6.2 Entwicklung der Verkehrsnachfrage ... 36

3 Die Luftqualität in Berlin: Art und Beurteilung der Verschmutzung .. 41
3.1 Beurteilungsgrundlagen .. 41
3.1.1 Messungen der Immissionsbelastung – das Berliner Luftgüte-Messnetz (BLUME) .. 41
3.1.2 Simulation der Luftbelastung mit Modellen ... 42
3.2 Beurteilung der Luftqualität anhand von Messungen .. 45
3.2.1 Stickstoffdioxid.. 45
3.2.2 Feinstaub PM₁₀ .. 47
3.2.3 Feinstaub PM_{2.5} ... 51
3.2.4 Polyzyklische aromatische Kohlenwasserstoffe (PAK) ... 52
3.3 Beurteilung auf der Basis von Modellrechnungen .. 53
3.3.1 Ergebnisse für Stickstoffdioxid für das Jahr 2009 ... 54
3.3.2 Ergebnisse für Feinstaub PM₁₀ für das Jahr 2009 ... 56
3.3.3 Ergebnisse für Feinstaub PM_{2.5} für das Jahr 2009 .. 58
3.4 Sozialräumliche Verteilung der Luftbelastung in Berlin – Modellvorhaben Umweltgerechtigkeit 60

4 Emission von Luftschadstoffen .. 64
4.1 Emissionen in Berlin .. 64
4.1.1 Industrie-Anlagen (Genehmigungsbedürftige Anlagen) ... 64
4.1.2 Hausbrand ... 67
4.1.3 Kleingewerbe .. 70
4.1.4 Kfz-Verkehr .. 70
4.1.5 Sonstiger Verkehr .. 74
4.1.6 Sonstige Quellen ... 74
4.1.7 Gesamtmenge und Verteilung der Emissionen in Berlin .. 76
4.2 Emissionen in der Umgebung Berlins .. 81
5 Ursachenanalyse
5.1 Meteorologische Randbedingungen in den Jahren 2005-2010
5.2 Herkunft der Stickstoffdioxidbelastung
 5.2.1 Bedeutung von Direktemissionen und Photochemie
 5.2.2 Verursacheranteile nach Quellgruppen
5.3 Herkunft der Feinstaub (PM$_{10}$)-Belastung
 5.3.1 Mittlere Verursacheranteile nach Quellgruppen aus Modellierungen
 5.3.2 Ursachen der Überschreitung des PM$_{10}$-Kurzzeitgrenzwertes
 5.3.2.1 Einfluss der Vorbelastung auf die Überschreitung des Tagesmittelwertes
 5.3.2.2 Herkunft der regionalen und überregionalen Hintergrundbelastung
 5.3.2.3 Überschreitung des Tagesgrenzwertes durch Baustellen
5.4 Herkunft der Feinstaub (PM$_{2.5}$)-Belastung
5.5 Herkunft der Benzo[a]pyren-Belastung
6 Bilanzierung bisheriger Maßnahmen
 6.1 Umweltzone
 6.2 Verbesserung der kommunalen Linienbusflotte
 6.3 Verbesserung des kommunalen Fuhrparks
 6.4 Förderung von Erdgasfahrzeugen
 6.5 Förderung des Umweltverbundes
 6.6 Parkraumbewirtschaftung
 6.7 Umwelt sensible Verkehrssteuerung
 6.8 Geschwindigkeitsbeschränkungen auf Hauptverkehrsstraßen
 6.9 Lkw-Durchfahrverbot in der Silbersteinstraße in Berlin-Neukölln
 6.10 Kommunikation nachhaltiger Mobilität
 6.11 Erprobung der Partikelfilternachrüstung von Fahrgastschiffen
 6.12 Staubemissionen von Baustellen
 6.13 Intensivierte Straßenreinigung
7 Immissionsprognose 2015/2020 ohne weitere Maßnahmen (Trendfall)
 7.1 Trendentwicklung der Immission im regionalen Hintergrund
 7.2 Trendentwicklung der Verkehrsbelastung und Fahrzeugflotte
 7.3 Entwicklung der Emissionen aus Berliner Quellen
 7.4 Immissionsprognose für den städtischen Hintergrund und an Straßen
 7.4.1 Prognose der NO$_x$-Immission für 2015 und 2020
 7.4.2 Prognose der PM$_{10}$-Immission für 2015 und 2020
8 Szenarienrechnungen zur Wirkung ausgewählter Maßnahmen
 8.1 Definition der Maßnahmen
 8.1.1 Annahmen für das Maßnahmenbündel 1: Fahrzeugtechnik
 8.1.2 Annahmen für das Maßnahmenbündel 2: Verkehrsflussoptimierung
 8.1.3 Annahmen für das Maßnahmenbündel 3: Tempo 30 an Hot-Spots
 8.1.4 Annahmen für das Maßnahmenbündel 4: Emissionsminderung im städtischen Hintergrund
 8.1.5 Annahmen für das Maßnahmenbündel 5: vorgezogene Flotte 2020
 8.2 Ergebnisse der Emissionsberechnungen
 8.3 Ergebnisse der Modellierung der Luftqualität
9 Maßnahmen des Luftreinhalteplans 2011-2017
 9.1 Raum-, Stadt- und Landschaftsplanung
 9.2 Verkehr auf Straße, Schiene und Wasserwegen
 9.2.1 Fahrzeugtechnik
 9.2.2 Verkehrslenkung
 9.2.3 Verkehrsverlagerung und -vermeidung
 9.2.4 Infrastruktur
 9.3 Wärmeversorgung von Gebäuden
 9.4 Bausektor

Michael Müller
Senator für Stadtentwicklung und Umwelt
Kurzfassung

Die Luftqualität in Berlin konnte durch zahlreiche in den letzten Jahren ergriffene Maßnahmen deutlich verbessert werden. Viele der anspruchsvollen, europäischen Luftqualitätsgrenzwerte werden in Berlin bereits sicher eingehalten. Dies gilt für die Schadstoffe Schwefeldioxid, Benzol, Kohlenmonoxid, für die sehr kleinen Partikel (PM$_{2.5}$) und für Schwermetalle im Feinstaub, deren Konzentrationen inzwischen weit unter den Grenzwerten liegen.

Um auch die Grenzwerte für Feinstaub (PM$_{10}$) und Stickstoffdioxid an verkehrsreichen Straßen überall einhalten zu können, sind jedoch weitere Maßnahmen notwendig. Durch die Umweltzone ging die Konzentration dieser Schadstoffe an innerstädtischen Straßen überproportional zurück. Ein gewisser Anteil von Anwohnerinnen und Anwohnern von Hauptverkehrsstraßen ist trotzdem noch höheren Luftbelastungen durch Feinstaub und Stickstoffdioxid ausgesetzt als Bewohnerinnen und Bewohner abseits gelegener Wohngebiete, in denen die Grenzwerte ganz überwiegend eingehalten werden. Insbesondere bei ungünstigen Wetterlagen mit schlechter Verdünnung der lokal freigesetzten Schadstoffe und hohem Schadstoffeintrag von außen werden die Grenzwerte für Feinstaub (PM$_{10}$) und Stickstoffdioxid (NO$_{2}$) in verkehrsreichen Straßen überschritten, was zu einer Gefährdung der Gesundheit der dort lebenden Berlinerinnen und Berliner führt.

Ein Großteil der Maßnahmen richtet sich daher an den Straßenverkehr, um dessen Schadstoffausstoß weiter zu senken.

Im Fokus stehen hierbei Maßnahmen zur Verringerung der Stickstoffdioxidbelastung. Der Ausstoß an Stickoxiden hat sich in den letzten Jahren nicht in dem Maße reduziert, wie es infolge der Modernisierung der Fahrzeugflotte erwartet worden war. Ein wesentlicher Grund liegt in Mängeln bei der Festlegung der europäischen Abgasnormen für Kraftfahrzeuge, die dazu führten, dass die erhoffte Abgasminderung unter den typischen innerstädtischen Fahrbedingungen weitgehend ausblieb. Darüber hinaus stieg gerade bei modernen Diesel-Pkw des relativen Anteil des Stickstoffdioxids im Abgas generell an.

So wurde trotz der Umweltzone und einer erfolgreichen Verkehrsplanung das Ziel, den von der EU vorgegebenen Jahresgrenzwert für Stickstoffdioxid ab 2010 einzuhalten, nicht erreicht. Ähnlich ging es fast allen größeren Städten in Europa. Zusammen mit 56 weiteren

Ergänzend zu den Berliner Maßnahmen sind auf bundesdeutscher und europäischer Ebene Initiativen zur Verschärfung von Abgasstandards und zur schnelleren Einführung moderner, emissionsmindernder Technologien notwendig.

Zur Verminderung grenzüberschreitender Verfrachtung von Luftschadstoffen muss die europäische Richtlinie über nationale Emissionshöchstgrenzen endlich fortgeschrieben und um eine Obergrenze für den Gesamttausstoß der feinen Partikel in jedem EU-Mitgliedsland ergänzt werden. Darüber hinaus wird Berlin zusammen mit Brandenburg und weiteren betroffenen Bundesländern die Bundesregierung drängen, den Dialog mit den osteuropäischen Nachbarstaaten über die Umsetzung zusätzlicher Maßnahmen zur Feinstaub-
minderung fortzusetzen und zu intensivieren. Berlin wird mit seinen langjährigen Erfahrungen in der Luftreinhalteplanung die dortigen Regionen und Kommunen bei der Umsetzung wirksamer Minderungsmaßnahmen unterstützen.

Im Folgenden werden die wichtigsten Ergebnisse des Luftreinhalteplans zusammengefasst.

1. Luftqualität in Berlin 2005 bis 2010

Stickstoffdioxid

Der Kurzzeitgrenzwert (nicht mehr als 18 stündliche Messwerte über 200 µg/m³ pro Jahr) konnte durchgehend an allen Stationen eingehalten werden.

Feinstaub
In dem Zeitraum von 2005 bis 2010 lag die jährliche Durchschnittsbelastung an allen Messstationen unter dem betreffenden Grenzwert von 40 µg/m³. Der Tagesgrenzwert in Form von 35 jährlich erlaubten Tagen mit Mittelwerten über 50 µg/m³ konnte dagegen in allen Jahren eingehalten werden.

Modellrechnungen der Schadstoffbelastung für das gesamte gut 1.600 km lange Hauptverkehrsstraßennetz zeigen, dass im Jahr 2009 in Berlin ca. 64.300 Anwohnerinnen und Anwohner an 79 km Hauptverkehrsstraßen einer gesundheitsschädlichen Feinstaubbelastung oberhalb des Grenzwertes ausgesetzt waren.

2. Die wichtigsten Berliner Schadstoffquellen im Jahr 2009

Stickoxide
Der Ausstoß von Stickoxiden im Stadtgebiet ging von 2002 bis 2009 um etwa 15 % zurück. Dominierende Quelle sind die Abgase des Straßenverkehrs mit einem Anteil von 39 %. Weitere wichtige Verursacher sind die Kraftwerke und industrielle Feuerungen mit einem Anteil von 34 % und der Hausbrand mit 14 %.

Feinstaub (PM$_{10}$)

Der größte Emissionsbeitrag in Berlin stammt mit 21 % aus Abrieb- und Aufwirbelungsprozessen des Straßenverkehrs. Im Gegensatz zu Dieselruß handelt es sich dabei meist um größere Partikel mit Durchmessern über 2,5 µm, so dass diese Partikel weniger tief eingeatmet werden können. Sehr viel kleiner und damit gefährlicher sind die aus Kfz-Abgasen stammenden Partikel, obwohl sie nur einen Anteil von 7 % am Gesamtausstoß an Feinstaub ausmachen. Insgesamt erreicht der Straßenverkehr einen Anteil von etwa 28 % am gesamten Feinstaubausstoß. Weitere wichtige Quellen sind die Holzverbrennung mit einem Anteil am Gesamtausstoß von etwa 12 %, mobile Maschinen wie Baumaschinen mit etwa 4 % sowie die diffusen Staubemissionen von Baustellen mit etwa 10 %. Allerdings sind diese Daten teilweise mit erheblichen Unsicherheiten behaftet, da die Emissionen aus diesen Quellen bisher nur unvollständig erfasst und berechnet werden können.

Der Ausstoß von Feinstaub aller Berliner Quellen ging von 2002 bis 2009 um ca. 25 % zurück. Im gleichen Zeitraum sanken die Emissionen aus dem Auspuff der Kraftfahrzeuge bis 2009 um 43 % von 394 t/a auf 225 t/a, u.a. durch die Einführung der Stufe 1 der Umweltzone. Die Emissionsminderung der Stufe 2 der Umweltzone um weitere 40 % wurde erst im Jahr 2010 wirksam und konnte somit hier noch nicht berücksichtigt werden.
3. Verursacheranteile nach Quellgruppen im Jahr 2009

Der Anteil einer Quellgruppe an dem Gesamtausstoß eines Schadstoffes in Berlin darf nicht gleich gesetzt werden mit seinem prozentualen Beitrag an der Luftschadstoffbelastung, die an einer Luftpüte-Messstation gemessen wird. Um den Beitrag einzelner Quellen oder Quellgruppen zur Luftbelastung zu bestimmen, müssen die Ausbreitungsbedingungen, d.h. die Verdünnung der ausgestoßenen Schadstoffe zwischen Quelle und Messort sowie atmosphärische Umwandlungs- und Ausscheidungsprozesse, berücksichtigt werden. Emissionen aus hohen Schornsteinen tragen lokal viel weniger zur Belastung bei als bodennah emittierende Quellen wie der Kfz-Verkehr. In grober Näherung werden die Abgase aus hohen Kraftwerksschornsteinen, bevor sie in der betrachteten Straßenschlucht ankommen, um etwa den Faktor 1.000, und Abgase aus kleineren Betrieben und Hausheizungen mit niedrigeren Schornsteinen um etwa den Faktor 50 stärker verdünnt als die Schadstoffe des dort fahrenden Straßenverkehrs.

Zudem berücksichtigen die oben genannten Zahlen nur Berliner Quellen. Da insbesondere Feinstaub mit der Luftströmung über weite Strecken transportiert wird, tragen auch Verursacher außerhalb Berlins zur Luftbelastung im Stadtgebiet bei.

Stickstoffdioxid (NO₂)

Hinsichtlich der Überschreitung des NO₂-Jahresgrenzwertes ist weiterhin der Straßenverkehr der mit großem Abstand wichtigste Verursacher mit einem Anteil von insgesamt 78 %. Andere Quellen sind dagegen nachrangig.

Feinstaub PM₁₀

Etwa 36 % der Feinstaubbelastung an einer Hauptverkehrsstraße wird durch Quellen in Berlin verursacht.

Der Import von Feinstaub aus regionalen, deutschlandweiten und europaweiten Quellen verursachte im Jahr 2009 etwa 64 % der Feinstaubbelastung. Damit hat der Einfluss der Berliner Quellen in den letzten Jahren besonders durch die im Verkehr erreichte Emissions-
minderung abgenommen, denn im Jahr 2002 lag der durch Modellrechnungen bestimmte Beitrag der Berliner Quellen noch bei ca. 50 %.

Um die Ursachen für das Auftreten von Überschreitungen des PM₁₀-Kurzzeitgrenzwertes zu bestimmen, wurden die Berliner Luftmesswerte in Abhängigkeit von den herrschenden Wetterbedingungen und der großräumigen Luftbelastung oder im Zusammenhang mit temporären lokalen Quellen wie Baustellen analysiert.

Erhöhte Feinstaubkonzentrationen durch Baustellen wurden anhand der typischen zeitlichen Verläufe mit kurzzeitigen, sehr hohen Konzentrationsspitzen identifiziert. So wurden im Jahr 2009 an der Station Mariendorfer Damm etwa 44 Überschreitungstage auf Baustelleneinfluss zurückgeführt. In dieser Zeit lag direkt angrenzend an die Messstation eine größere Baustelle (Abriss und Neubau eines mehrstöckigen Gebäudes), deren Einfluss auf die Messwerte trotz eingeleiteter Maßnahmen zur Minimierung der Emissionen beträchtlich war.

4. Umsetzung des Luftreinhalteplans 2005-2010

An besonders hoch belasteten Straßenabschnitten wurden lokal wirksame Maßnahmen umgesetzt oder erprobt. Das Lkw-Durchfahrverbot in der Silbersteinstraße führte zu einer Reduzierung der Luftbelastung um etwa 10 %. Mit der Anordnung und Kontrolle von Tempo 30 in der Schilhornstraße konnte die lokale zusätzliche Belastung durch den dortigen Kfz-Verkehr um etwa 30 % bei Feinstaub und 15 % bei Stickstoffdioxid verringert werden. Das entspricht einer Reduzierung der Gesamtbelastung in der Schilhornstraße um etwa 5 bis 10 %. In der Leipziger Straße, die zu den höchst belasteten Straßen in Berlin gehört, wurden über mehrere Monate im Rahmen des Modellprojekts IQMobility verschiedene Konzepte zur Verstetigung des Verkehrsflusses sowie Tempo 30 getestet und deren Wirksamkeit mit aufwändigen Messungen und Modellrechnungen untersucht. Die ermittelte Minderung des Schadstoffausstoßes lag in diesem zeitweise durch hohe Fahrzeugzahlen überlasteten und durch eine Baustelle weiter beeinträchtigten Straßenzug bei etwa 3 bis 10 %.

Fahrgastschiffe fallen nicht unter die Regelungen der Umweltzone, können aber lokal an den Wasserstraßen zu merklichen Belastungen durch Dieselabgase führen. Wie ein erfolgreich durchgeführtes Modellprojekt gezeigt hat, lässt sich der Dieselraußausstoß der Motoren durch Nachrüstung mit Partikelfiltern um mehr als 90 % vermindern.

Als mögliche Maßnahme zur Reduktion der Feinstaubbelastung aus der Aufwirbelung von Partikeln im Straßenverkehr wurde in zwei Projekten eine intensivere Straßenreinigung erprobt, um die auf der Straßenoberfläche abgelagerte Staubmenge zu reduzieren. Es konnte allerdings keine signifikante Reduzierung der Feinstaubkonzentration gemessen werden. Die Maßnahme wurde daher nicht weiter verfolgt.
5. Prognose der zukünftigen Luftqualität ohne zusätzliche Maßnahmen bis 2020

Stickstoffdioxid

Der Stickoxidausstoß wird im Jahr 2015 um etwa 11 % und im Jahr 2020 um etwa 30 % niedriger sein als im Jahr 2009. Der größte quellgruppenspezifische Rückgang wird beim Kfz-Verkehr mit 22 % bzw. 45 % erreicht. Dabei wurde angenommen, dass alle bisher vorgesehenen Maßnahmen umgesetzt und keine zusätzlichen Maßnahmen ergriffen werden (Trendszenario).

Feinstaub

Im Trendszenario ohne zusätzliche Maßnahmen geht der gesamte Feinstaubausstoß in Berlin im Vergleich zum Jahr 2009 bis zum Jahr 2015 um etwa 4 % und bis zum Jahr 2020 um etwa 11 % zurück. Dabei ergeben sich für die verschiedenen Quellen sehr unterschiedliche Rückgänge. Die höchsten Minderungen werden mit 45 % bis 2015 und 73 % bis 2020 für Dieselrußpartikel durch die Einführung der Umweltzone Stufe 2 im Jahr 2010, die weitere Modernisierung der Fahrzeugflotte und die Einführung des Abgasstandards Euro 6 erwartet.

Die sowohl in Berlin als auch europaweit zu erwartenden Rückgänge des Schadstoffausstoßes werden jedoch nicht ausreichen, um bis 2020 den Tagesgrenzwert für Feinstaub einzuhalten. Den Modellrechnungen zufolge wird im Trendszenario ohne zusätzliche Maßnahmen bis 2015 bzw. 2020 die überregionale Feinstaubbelastung um nur höchstens 5 % abnehmen, während die verkehrsbedingte Zusatzbelastung an Berliner Hauptverkehrsstraßen um immerhin 23 % und die zusätzlich erzeugte Verschmutzung in innerstädtischen verkehrsarmen Wohngebieten um 14 % zurückgeht.

Zur Reduktion von Feinstaub wird daneben auch eine Ausrüstung von Baumaschinen und stationären Industriemotoren mit Partikelfiltern und eine Minderung des Schadstoffausstoßes aus Feststofffeuerungen (z.B. bei der Holzverbrennung) angestrebt. Auch die Maßnahmen des Klimaschutzes zur Reduzierung des Wärmebedarfs von Gebäuden und die
Anwendung anspruchsvoller Umweltstandards für Mini-Blockheizkraftwerke tragen zur Verminderung der Luftbelastung bei.

Stickoxidemissionen vorgeschlagen, so dass der eingangs erwähnte kontraproduktive Effekt steigender Stickstoffdioxidanteile im Abgas weitgehend vermieden worden wäre. Leider ist die EU-Kommission dem Vorschlag nicht gefolgt, mit der Folge, dass das vorhandene technische Potenzial zur Minderung der Stickoxidemission von Dieselfahrzeugen weitgehend ungenutzt blieb.

Fazit

1 Anlass und Grundlagen des Luftreinhalteplans

1.1 Anlass des Luftreinhalteplans: Überschreitung von Luftqualitätsgrenzwerten und daraus resultierende Gefahren für Gesundheit und Umwelt

Zum Schutz der menschlichen Gesundheit und der Umwelt hat die Europäische Gemeinschaft Grenzwerte für Luftschadstoffe festgelegt, die ab einem bestimmten Zeitpunkt nicht mehr überschritten werden dürfen. Empfindliche Bevölkerungsgruppen sind dabei besonders zu schützen, wobei die Leitlinien der Weltgesundheitsorganisation (WHO) die Basis bilden. Als Schadstoff wird jeder in der Luft vorhandene Stoff bezeichnet, „der schädliche Auswirkungen auf die menschliche Gesundheit und/oder die Umwelt insgesamt haben kann“ (2008/50/EU). Von besonderem Interesse sind dabei Feinstäube kleiner als 10 μm aerodynamischer Durchmesser (PM\(_{10}\)) und kleiner als 2,5 μm (PM\(_{2,5}\)), Ozon (O\(_3\)) und Stickstoffdioxid (NO\(_2\)).

In Berlin können die Grenzwerte für Stickstoffdioxid und Feinstaub (PM\(_{10}\)) nicht überall eingehalten. Damit sind erhöhte Gefahren für die menschliche Gesundheit verbunden.

Zusammen mit flüchtigen Kohlenwasserstoffen sind erhöhte NO\textsubscript{2}-Konzentrationen auch für die erhöhten bodennahen Ozonwerte verantwortlich zu machen. Ozon beeinträchtigt nachweislich die menschlichen Lungenfunktionen und verursacht bei Pflanzen Schäden an den Blattorganen.

Aufbauend auf wissenschaftlichen Erkenntnissen, die von einer breiten Forschergemeinde geteilt werden, hat die WHO Richtlinien vorgegeben, die Außenluft nachhaltig zu verbessern. Dafür wurden Richtwerte vorgeschlagen, die auch Grundlage für die Festlegung europäischer Immissionsgrenzwerte sind. Des Weiteren werden in den Richtlinien Wege aufgezeigt, wie die Luftgüte weltweit verbessert oder beibehalten werden kann. Je nach Region stehen dabei unterschiedliche Verursacher in Fokus: Sind in den ärmeren Ländern Asiens und Afrikas immer noch offene Holzöfen und veraltete Industrieanlagen für erhöhte Luftschadstoffbelastungen verantwortlich zu machen, so ist in Europa der Verkehr Hauptursache für zu hohe Schadstoffkonzentrationen vor allem in den Städten3.

1.2 Rechtsgrundlagen

Die darin enthaltenen Grundsätze und Ziele lassen sich in den folgenden Punkten zusammenfassen:

- Die rechtlich einheitliche Definition und quantitative Festlegung von Luftqualitätszielen „zur Vermeidung, Verhütung oder Verringerung schädlicher Auswirkungen auf die menschliche Gesundheit und die Umwelt“.
- Die Einführung einheitlicher Methoden und Kriterien für die Beurteilung der Luftqualität.
- Die Verpflichtung Maßnahmen zu ergreifen, um die Einhaltung der festgelegten Grenzwerte innerhalb einer vorgegebenen Frist oder deren einmal erreichte Einhaltung weiter zu gewährleisten. Dazu müssen in den belasteten Gebieten oder Ballungsräumen gegebenenfalls Luftreinhaltepläne aufgestellt werden.
- Die Verpflichtung, die Bevölkerung über die aktuelle Luftverschmutzung zu informieren und bei Überschreitung bestimmter Alarmschwellen zu warnen und gegebenenfalls „Pläne für kurzfristige Maßnahmen“ aufzustellen.
- Die Notwendigkeit zur Berichterstattung an die Europäische Kommission über die Einhaltung/Nichteinhaltung der Grenzwerte, über gegebenenfalls erstellte Maßnahmepläne zur Einhaltung der Grenzwerte und über die mögliche Inanspruchnahme einer Verlängerung der Einhaltungsfrist.

Kernstück der neuen Luftqualitätsrichtlinie bzw. der 39. BImSchV sind die rechtlich verbindlichen Immissionsgrenzwerte für die Luftschadstoffe Schwefeldioxid (SO\textsubscript{2}), Blei, Kohlenmonoxid (CO), Benzol, Stickstoffdioxid (NO\textsubscript{2}) Feinstaub (PM\textsubscript{10} und PM\textsubscript{2.5}) und weniger verbindliche Zielwerte für Ozon, sowie für Arsen, Kadmium, Nickel und Benzo[a]pyren, die in einer weiteren Richtlinie 2004/107/EG festgelegt wurden.

Die Einhaltung dieser Grenzwerte muss prioritär an mutmaßlichen Belastungsschwerpunkten erfolgen, wo „(...) die höchsten Konzentrationen auftreten, denen die Bevölkerung wahrscheinlich direkt oder indirekt über einen Zeitraum ausgesetzt sein wird, der im Vergleich zum Mittelungszeitraum der betreffenden Grenzwerte signifikant ist“, so heißt es in...
der Richtlinie⁴. Es geht also um die Stellen mit der zu erwartenden Maximalbelastung, wo Menschen nicht nur kurz, sondern typischerweise und wiederholt exponiert sind. Das kann ein nächstgelegenes Wohngebiet am Rande von stark emittierenden Industrieanlagen oder potenziell jede stark befahrene städtische Hauptverkehrsstraße sein, in der sich Wohnhäuser, Schulen, Krankenhäuser und ähnliche Einrichtungen befinden. Die Mess- und Beurteilungspunkte in Hauptverkehrsstraßen dürfen außerdem nicht mehr als 10 Meter vom Fahrbahnrand entfernt sein und sollen 1,5 bis 4 Meter über dem Boden liegen. Die Grenzwerteinhal tung wird also dort überprüft, wo Menschen typischerweise auf dem Gehweg laufen oder sich die Fenster von straßennahen Wohnungen befinden. Daneben soll die Luftschadstoffbelastung in Wohngebieten beurteilt werden, „(...) die für die Exposition der Bevölkerung allgemein repräsentativ“ ist.

Die meisten Grenz- und Zielwerte und ihre Einhaltungsfristen wurden aus den alten Richtlinien unverändert in die neue Luftqualitätsrichtlinie übernommen. Eine in der Tochterrichtlinie 1999/30/EG unter Revisionsvorbehalt stehende Verschärfung der Grenzwerte für Feinstaub PM₁₀ wurde nicht umgesetzt, sondern die ursprünglichen Grenzwerte beibehalten. Neu sind Standards für die Feinstaubfraktion bis zu einem aerodynamischen Durchmesser von 2,5 µm (PM₂,₅) in Form eines rechtlich verbindlichen, ab 2015 einzuhaltenden Grenzwerts (s. Tabelle 1.1) und eines identischen, aber weniger verbindlichen Zielwerts, der „nach Möglichkeit“ schon ab 2010 einzuhalten ist.

Zusätzlich wurde ein „nationales Ziel“ für eine prozentuale Reduzierung der durchschnittlichen Exposition der städtischen Wohnbevölkerung gegenüber PM₂,₅ festgelegt. Da es sich dabei um einen, aus 36 Messstellen in städtischen Wohngebieten berechneten räumlichen Durchschnittswert der Belastung für ganz Deutschland handelt (Average Exposure Indicator oder AEI), der innerhalb eines Jahrzehnts um insgesamt 15 % reduziert werden muss, werden entsprechende Maßnahmenprogramme nicht auf lokaler Ebene, sondern von der Bundesregierung entwickelt und umgesetzt. Gleiches gilt für Maßnahmenkonzepte zur Bekämpfung der Ozonbelastung, die aufgrund der weiträumigen Verteilung des Ozons und seiner Vorläuferstoffe sinnvoll nur auf nationaler und europäischer Ebene konzipiert und umgesetzt werden können. Der hier vorgelegte Luftreinhalteplan für Berlin enthält deshalb keine speziell auf die Einhaltung der Zielwerte für Ozon und des nationalen Ziels zur Minderung der PM₂,₅-Belastung zugeschnittenen Maßnahmen.

⁴ Richtlinie 2008/50/EG, Anhang III, Abschnitt B

Berlin wird deshalb von der Möglichkeit einen Plan für kurzfristige Maßnahmen aufzustellen, um Überschreitungen der Immissionsgrenzwerte zu vermeiden, keinen Gebrauch machen.

Für die Maßnahmen in Luftreinhalteplänen bzw. Aktionsplänen bestehen darüber hinaus folgende rechtliche Anforderungen:

Die Grenzwerte und die dazugehörigen Einhaltungsfristen für die Schadstoffe, für die die Luftreinhalteplanung in Berlin aufgrund von Überschreitungen relevant sind, zeigt Tabelle 1.1.

6 Bundes-Immissionsschutzgesetz (BImSchG), § 47, Absatz 4
Tabelle 1.1: Grenzwerte für die Luftqualität für ausgewählte Luftschadstoffe

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Mittel über</th>
<th>Grenzwert</th>
<th>zulässige Anzahl von Überschreitungen</th>
<th>Grenzwert einzuhalten bis</th>
<th>mögliche Fristverlängerung bis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feinstaub (PM$_{10}$)</td>
<td>24 h</td>
<td>50 µg/m3</td>
<td>35 x / Jahr</td>
<td>01.01.2005</td>
<td>11.06.2011</td>
</tr>
<tr>
<td></td>
<td>1 Jahr</td>
<td>40 µg/m3</td>
<td>--</td>
<td>01.01.2005</td>
<td>11.06.2011</td>
</tr>
<tr>
<td>Stickstoffdioxid (NO$_2$)</td>
<td>1 h</td>
<td>200 µg/m3</td>
<td>18 x / Jahr</td>
<td>01.01.2010</td>
<td>01.01.2015</td>
</tr>
<tr>
<td></td>
<td>1 Jahr</td>
<td>40 µg/m3</td>
<td>--</td>
<td>01.01.2010</td>
<td>01.01.2015</td>
</tr>
<tr>
<td>Benzo[a]pyren* (BaP)</td>
<td>1 Jahr</td>
<td>1 ng/m3</td>
<td>--</td>
<td>01.10.2013</td>
<td></td>
</tr>
<tr>
<td>Feinstaub (PM$_{2.5}$)</td>
<td>1 Jahr</td>
<td>25 µg/m3</td>
<td>--</td>
<td>01.01.2015</td>
<td></td>
</tr>
</tbody>
</table>

* weniger verbindlicher Zielwert

1.3 Möglichkeit der Verlängerung der Einhaltefrist der Grenzwerte

Ebenfalls neu in die Luftqualitätsrichtlinie aufgenommen wurde die Möglichkeit, die in Tabelle 1.1 angegebene Einhaltefrist für Feinstaub (PM$_{10}$) bis Mitte 2011 und für Stickstoffdioxid (NO$_2$) bis 2015 verlängern zu können. Diese Option wurde eingeräumt, weil trotz zum Teil ambitionierter Maßnahmenpläne in vielen europäischen Regionen die großräumige Hintergrundbelastung an Feinstaub (PM$_{10}$) und die NO$_2$-Werte an Verkehrsstellern nur vergleichsweise langsam bzw. gar nicht zurückgingen, so dass europaweit die entsprechenden Grenzwerte in vielen Regionen nicht fristgerecht eingehalten wurden (s. Abbildung 1.1). Auf die Ursachen für die Nichteinhaltung der Grenzwerte in Berlin wird in Kapitel 5 genauer eingegangen.

Eine Verlängerung der Einhaltefristen ist an einige Voraussetzung gebunden, deren Einhaltung der Europäischen Kommission in einem umfangreichen Berichtsverfahren mitgeteilt werden müssen. Dazu gehört der Nachweis, dass

- ein Luftreinhalteplan (LRP) existiert,
- bereits alle geeigneten Maßnahmen zur Senkung der Schadstoffbelastung ergriffen wurden, wie zum Beispiel der Einbau der besten verfügbaren Abgasreinigungstechnologien in Anlagen, die Nutzung sauberer Brenn- oder Kraftstoffe, die Minderung der Verkehrsmissionen durch Verkehrsplanung, Verkehrsmanagement, Umweltzonen, Nachrüstprogramme für Rußfilter, etc,

Zusätzlich muss in Bezug auf Feinstaub (PM$_{10}$) belegt werden, dass die Nichteinhaltung der Grenzwerte durch ungünstige standortspezifische oder klimatische Bedingungen für die Ausbreitung der Luftschadstoffe oder auf den Eintrag von Feinstaub über Staatsgrenzen hinweg verursacht wurde.

Auf Basis dieser Notifizierung prüft die Europäische Kommission, ob eine Fristverlängerung gerechtfertigt ist, oder ob sie ein Verfahren wegen der Nichteinhaltung der Europäischen Richtlinien einleitet.

In Berlin war eine Notifizierung einer Verlängerung der Frist für die Einhaltung der Feinstaubgrenzwerte nicht erforderlich, weil die Grenzwerte in den Jahren 2007 und 2008 eingehalten wurden (s. Kapitel 3.2.2). Die in den Folgejahren aufgetretenen Überschreitungen der Grenzwerte können überwiegend dem grenzüberschreitenden Transport von Feinstaub, vorwiegend aus polnischen Quellen, zugeschrieben werden (s. Kapitel 5.3.2). Der Anteil Berliner Quellen an den Überschreitungen des Tagesgrenzwertes für Feinstaub hat sich aufgrund der Einführung der Umweltzone und zahlreicher weiterer Maßnahmen deut-

\[\text{Abbildung 1.1: Jahresmittelwerte im Jahr 2009, links für Feinstaub (PM\(_{10}\)), rechts für Stickstoffdioxid. Rote und gelbe Punkte kennzeichnen Messstationen mit Überschreitungen der entsprechenden Immissionsgrenzwerte}^{10}\]

\[\text{1.4 Plangebiet}\]

Das Plangebiet umfasst das gesamte Gebiet innerhalb der Landesgrenzen Berlins. Detaillie- rierte Angaben zum Plangebiet sind in Kapitel 2 zusammengestellt.

\[\text{1.5 Zuständige Behörde}\]

Zuständig für die Planaufstellung ist gemäß Landesrecht die für Umwelt zuständige Senatsverwaltung. Die Federführung lag bei:

Senatsverwaltung für Stadtentwicklung und Umwelt
Referat IX C „Immissionsschutz“
Brückenstraße 6
10179 Berlin

\[\text{1.6 Umweltverträglichkeitsprüfung}\]

Luftreinhaltepläne gehören gemäß § 14b Abs. 1 Nr. 2 UVPG in Verbindung mit Anlage 3 Nr. 2 UVPG zu den Plänen und Programmen, bei denen eine Strategische Umweltprüfung (SUP) durchgeführt werden muss, sofern mit dem Luftreinhalteplan Rahmen gesetzt werden für Entscheidungen über die Zulässigkeit von Vorhaben, die einer Umweltverträglichkeitsprüfung oder Vorprüfung im Einzelfall bedürfen. Derartige Rahmendarstellungen be- treffen nach § 14 Abs. 3 UVPG Festlegungen mit Bedeutung für spätere Zulassungsentscheidungen, insbesondere zum Bedarf, zur Größe, zum Standort, zur Beschaffenheit oder

\[\text{Senatsverwaltung für Gesundheit, Umwelt und Verbraucher-}
\text{schutz: Ein Jahr Umweltzone Stufe 2 in}
\text{Berlin – Untersuchungen zur Wirkung}
\text{auf den Schadstoffausstoß des Straßen-
\text{verkehrs und die Luftqualität in Berlin.}
\text{2011 Berlin}}\]

\[\text{9 die an die Kommission}
\text{übersandten Mitteilungen sind hier ver-}
\text{öffentlicht:}
\text{http://ec.europa.eu/environment/air/
\text{quality/legislation/time_extensions.htm}}\]

\[\text{10 EEA (2011): Technical report}
\text{Nr. 12/2011, Europäische Umweltagen-
\text{tur, Kopenhagen.}\}

1.7 Öffentlichkeitsbeteiligung
Gemäß § 47 Abs. 5 BImSchG ist die Öffentlichkeit bei der Aufstellung von Luftreinhalteplänen in geeigneter Weise zu beteiligen. Hierzu sind die Pläne in geeigneter Weise der Öffentlichkeit zugänglich zu machen. Es sind die Anforderungen des Gesetzes über die Öffentlichkeitsbeteiligung in Umweltangelegenheiten (Öffentlichkeitsbeteiligungsgesetz) nach der EG-Richtlinie 2003/35/EG zu beachten.

Weiterführende Informationen zur Luftreinhaltung sind unter der Internetadresse der Senatsverwaltung für Stadtentwicklung und Umwelt verfügbar: http://www.stadtentwicklung.berlin.de/umwelt/luftqualitaet/.

1.8 Inkrafttreten
2 Allgemeine Informationen

2.1 Basisdaten

Der Stadtstaat Berlin ist das größte zusammenhängend bebauten Ballungsgebiet in der Bundesrepublik Deutschland. Das Stadtgebiet von Berlin umfasst eine Fläche von 892 km². Die größte Ausdehnung beträgt in ost-westlicher Richtung 45 km und in nord-südlicher Richtung 38 km. Der Berlin umgebende engere Verflechtungsraum im Land Brandenburg umfasst eine Fläche von 2.851 km².

Politisch ist Berlin in zwölf Bezirke aufgegliedert, die für zahlreiche Belange der Luftreinhaltung eine eigene Zuständigkeit haben, z.B. Überwachung von nicht-genehmigungsbedürftigen Anlagen.

Tabelle 2.1: Entwicklung relevanter Strukturdaten 1990-2009

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevölkerung (Personen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td>3.433.695</td>
<td>3.382.169</td>
<td>3.395.189</td>
<td>3.442.675</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>2.641.152</td>
<td>2.601.962</td>
<td>2.559.483</td>
<td>2.511.525</td>
</tr>
<tr>
<td>Berlin und Brandenburg gesamt</td>
<td>6.074.847</td>
<td>5.984.131</td>
<td>5.954.672</td>
<td>5.954.200</td>
</tr>
<tr>
<td>Anzahl Haushalte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td>1.754.600 (1991)</td>
<td>1.822.800</td>
<td>1.897.900</td>
<td>1.988.000</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>1.038.900 (1991)</td>
<td>1.160.500</td>
<td>1.218.300</td>
<td>1.245.300</td>
</tr>
<tr>
<td>Berlin und Brandenburg gesamt</td>
<td>2.793.500</td>
<td>2.983.300</td>
<td>3.116.200</td>
<td>3.233.300</td>
</tr>
<tr>
<td>Erwerbstätige in Berlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produzierendes Gewerbe</td>
<td>470.000</td>
<td>285.700</td>
<td>219.700</td>
<td>215.600</td>
</tr>
<tr>
<td>Dienstleistungsbereiche</td>
<td>1.180.000</td>
<td>1.282.500</td>
<td>1.317.700</td>
<td>1.447.400</td>
</tr>
<tr>
<td>Berlin gesamt</td>
<td>1.660.000</td>
<td>1.575.400</td>
<td>1.543.000</td>
<td>1.667.900</td>
</tr>
<tr>
<td>Gebäude in Berlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wohnungen in Berlin</td>
<td>1.713.000</td>
<td>1.862.766</td>
<td>1.881.837</td>
<td>1.894.564</td>
</tr>
<tr>
<td>Büroflächen (BGF in qm)²</td>
<td>11.000.000</td>
<td>18.600.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verkaufsflächen (VKF in qm)³</td>
<td>2.280.000</td>
<td>4.000.000</td>
<td>4.300.000</td>
<td>4.600.000</td>
</tr>
</tbody>
</table>

Quellen: soweit nicht anders benannt: Amt für Statistik Berlin-Brandenburg
2 FNP-Bericht 2009
3 Wirtschafts- und Arbeitsmarktbericht Berlin 2009/2010

Abbildung 2.1: Berlin und seine Bezirke sowie Einwohnerdichte nach statistischen Gebieten (2009)

Einwohnerdichte in Einwohner je 1.000 m²
- < 5
- 5 bis < 10
- 10 bis < 15
- 15 bis < 20
- ≥ 20

Berlin
Bezirk
Städtisches Gebiet

2.2 Topographie
Berlin liegt auf 52 Grad 30´ nördlicher Breite und 13 Grad 30´ östlicher Länge inmitten des Norddeutschen Tieflandes, etwa 160 bis 220 km südlich der Ostseeküste und in gleichem Abstand nördlich des sächsisch-thüringischen Mittelgebirgsrandes. Das Nachbarland Polen liegt etwa 80 km entfernt.

Im Warschau-Berliner Urstromtal gelegen durchzieht das Spreetal das Stadtgebiet von Südosten nach Nordwesten. Das sehr flache Tal hat an den Stadtrandern eine Breite von etwa 10 km, zur Innenstadt hin verengt es sich auf etwa 4 km. Sein mittleres Niveau liegt bei 35 m über NN. Vom Spreetal ausgehend steigt das Gelände des Barnim nach Nordosten hin zunächst schnell auf etwa 50 m und dann sehr sanft bis zum Stadtrand auf eine Höhe von 60 bis 70 m an. Nach Süden gibt es einen ähnlich schnellen Anstieg aus dem Tal auf bis zu 50 m.

Dahinter erstreckt sich die Teltowhochfläche in einer mittleren Höhe von 45 m bis zum südlichen Stadtrand. Im Westen der Stadt erheben sich die Havelberge bis zu einer Höhe von 97 m. Die höchsten natürlichen Erhebungen im Berliner Stadtgebiet sind die im Südosten gelegenen Müggelberge. Sie weisen eine Höhe von maximal 115 m auf und stehen als Inselberge inmitten des Urstromtales. Weiterhin ist eine Anzahl von künstlichen Erhebungen vorhanden. So entstanden durch Ablagerungen von Bauschutt und Trümmern die Erhebungen im Volkspark Friedrichshain und im Volkspark Prenzlauer Berg, die Hellersdorfer Berge und der Teufelsberg (115 m).

2.3 Klima und meteorologische Verhältnisse

Berlin liegt im Übergangsbereich zwischen kontinental und mehr ozeanisch geprägtem Klima. Im Winter macht sich stärker der kontinentale Einfluss durch Einwirkung von ost-europäischen Hochdruckgebieten bemerkbar, in denen sich häufig Temperaturinversionen bilden. Die Sommermonate werden in der Regel eher durch ozeanisches Klima geprägt.

Ausgewählte Kenngrößen sind in Tabelle 2.2 zusammengefasst. Im Folgenden werden einige meteorologische Einflussfaktoren näher beschrieben.

Temperatur

Weitere temperaturbezogene Daten sind in Tabelle 2.2 zusammengestellt.

Windgeschwindigkeit

Die Windgeschwindigkeit beschreibt die Strömungsgeschwindigkeit der Atmosphäre und die Kapazität der Atmosphäre, die emittierten Schadstoffmengen horizontal zu verdünnen. Für die Modellrechnungen zur Simulation der räumlichen Verteilung der Luftbelastung wird zur Beschreibung der klimatischen Verhältnisse in Berlin die Messstelle Grunewald des Berliner Luftgüte-Messnetzes verwendet, die in 27 m Höhe über dem Boden und in 10 m Höhe über den Baumwipfeln angeordnet ist.

Diese Station wurde ausgewählt, weil aufgrund der gleichmäßigen Struktur des Baumbestandes um die Messstelle herum die Windmessung nicht durch Hindernisse beeinflusst wird. Darüber hinaus repräsentiert sie die Rauhigkeitsverhältnisse in der Stadt mit zahlreichen Bäumen und Gebäuden sehr viel besser als die beiden Messstellen des Deutschen Wetterdienstes auf dem Flughafen Tempelhof und Tegel, wo um etwa 1,5 m/s höhere Windgeschwindigkeiten gemessen werden.

Die mittleren Windgeschwindigkeiten an der Station Grunewald sind in den Sommermonaten mit 2,3 m/s am geringsten; ab September steigen die Werte an und erreichen ihr Maximum von 3,1 m/s im Februar. Mit einem Anteil von ca. 40 % sind Windgeschwindigkeiten von 2 bis 3 m/s am häufigsten. Windgeschwindigkeiten von weniger als 1,5 m/s, die für die Ausbreitung von Schadstoffen ungünstig sind, werden mit einem Anteil von 15 % registriert. Besonders geringe Windgeschwindigkeiten, die von den Messgeräten als Windstille erfasst werden, treten nur etwa in 1 bis 2 % aller Fälle auf. Im Winter ist die Häufigkeitsverteilung insgesamt zu höheren Werten hin verschoben.

Windrichtung

Die Windrichtung beeinflusst die lokale Belastung der Luft durch einzelne Schadstoffquellen. Sie bestimmt darüber hinaus, wie stark die in den Berliner Ballungsraum einströmende Luft mit Schadstoffen vorbelastet ist.

Der Zusammenhang zwischen südöstlicher Windströmung und erhöhter Vorbelastung der Luft besteht trotz der gleichmäßigeren Windgeschwindigkeitsverteilung und der geringeren Inversionshäufigkeit in abgeschwächter Form auch im Sommer. Windrichtungen aus dem Südostsektor korrespondieren oft mit trockenen Wetterperioden, in denen die Staubaufwirbelung und die Verweildauer der Feinstaubpartikel in der Atmosphäre erhöht sind.

Stabilität der atmosphärischen Schichtung und Inversionen

Temperaturinversionen entstehen durch nächtliche Ausstrahlung, besonders über weiten Schneebedeckungen (Strahlungsinversionen), durch Überschiebung von Warmluft über kalte Luft (Aufgleitversionen) und durch dynamisches Absinken der Luft im Bereich von Hochdruckgebieten (Absinkversion). Bei ungünstigen Bedingungen können Inversionen mit bis zu 1.000 m Mächtigkeit und bis zu 20 Grad Temperaturzunahme entstehen. Die Höhe der Untergrenze der Inversion weist in Gebieten ohne Nebelbildung und mit klarem Himmel einen starken Tagesgang auf, der sich auch in den Tagesgängen der Luftbelastung bemerkbar macht. Oft löst sich die Inversion im Tagesverlauf durch die Sonneneinstrahlung wieder auf und bildet sich ggf. nachts neu.

Für die Ausbreitung der Luftschadstoffe sind Inversionen, deren Untergrenze auch am Morgen noch unterhalb 700 m Höhe liegt, besonders ungünstig. Mehr als 50 % der für das Zustandekommen erhöhter Immissionsbelastung relevanten, tagsüber anhaltenden Inversionen treten in Berlin im Windrichtungssktor 135 bis 225 Grad (Südost bis Südwest) und etwa 85 % im Sektor 90 Grad (O) bis 225 Grad (WSW) auf (Abbildung 2.3). Im Jahresverlauf werden diese Inversionen praktisch nur im Winter festgestellt. Denn im Sommer erwärmte die Sonneneinstrahlung am Tage den Erdboden und die bodennahe Luftschicht schnell und sorgt so für einen guten vertikalen Austausch der Luftschadstoffe. Dies hat zur Folge, dass im Winter häufig erhöhte Konzentrationen gemessen werden, da der vertikale Austausch von Luftschadstoffen behindert ist. Zusätzlich wird oft von Süden und Südosten Luft herangeführt, die bereits mit Schadstoffen vorbelastet ist.
Niederschlag

In Berlin fielen in der Periode von 1971 bis 2000 im Durchschnitt 578 mm Niederschlag pro Jahr, mit der höchsten mittleren Monatsmenge im Juni mit 67 mm und der niedrigsten Menge im Februar mit 36 mm. Damit liegen die Niederschlagsmengen im Jahresdurchschnitt 12 mm niedriger als in der 10 Jahre älteren, als Referenz für das Klima verwendeten Periode von 1961-1990 (s. Tabelle 2.2)

Einige Daten zur Beschreibung des Klimas von Berlin sind in der Tabelle 2.2 zusammenge stellt.

Abbildung 2.3: Häufigkeit von Temperaturinversionen in Abhängigkeit von der Windrichtung

Tabelle 2.2: Klimadaten in Berlin (Quelle: Institut für Meteorologie der Freien Universität Berlin, 2004) wenn nicht anders vermerkt, beziehen sich die Mittelwerte auf die Referenzperiode 1961-1990

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lufttemperatur (°C in 2 m Höhe ü.Gr.)</td>
<td></td>
</tr>
<tr>
<td>Mittleres Monatsmittel (1971-1990)</td>
<td>0,5</td>
<td>1,2</td>
<td>4,6</td>
<td>8,7</td>
<td>13,9</td>
<td>16,5</td>
<td>18,4</td>
<td>17,8</td>
<td>13,6</td>
<td>9,1</td>
<td>4,4</td>
<td>1,8</td>
</tr>
<tr>
<td>Höchstes Monatsmittel</td>
<td>5,0</td>
<td>6,2</td>
<td>8,0</td>
<td>11,9</td>
<td>16,8</td>
<td>21,0</td>
<td>22,8</td>
<td>21,6</td>
<td>18,0</td>
<td>12,4</td>
<td>8,0</td>
<td>5,2</td>
</tr>
<tr>
<td>Mittleres Tagesmaximum</td>
<td>1,8</td>
<td>3,5</td>
<td>7,9</td>
<td>13,1</td>
<td>18,6</td>
<td>21,8</td>
<td>23,1</td>
<td>22,8</td>
<td>18,7</td>
<td>13,3</td>
<td>7,0</td>
<td>3,2</td>
</tr>
<tr>
<td>Tiefsten Monatsmittel</td>
<td>-9,6</td>
<td>-10,5</td>
<td>-0,3</td>
<td>4,8</td>
<td>10,5</td>
<td>11,9</td>
<td>15,1</td>
<td>14,9</td>
<td>10,0</td>
<td>5,1</td>
<td>-0,6</td>
<td>-5,4</td>
</tr>
<tr>
<td>Mittlere Tagesminimum</td>
<td>-2,9</td>
<td>-2,2</td>
<td>0,5</td>
<td>3,9</td>
<td>8,2</td>
<td>11,4</td>
<td>12,9</td>
<td>12,4</td>
<td>9,4</td>
<td>5,9</td>
<td>2,1</td>
<td>-1,1</td>
</tr>
<tr>
<td>Heiße Tage (Max. ≥ 30 °C)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,1</td>
<td>0,2</td>
<td>1,2</td>
<td>2,5</td>
<td>1,6</td>
<td>0,1</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
</tr>
<tr>
<td>Sommertage (Max. ≥ 25 °C)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,4</td>
<td>3,3</td>
<td>7,8</td>
<td>10</td>
<td>9,1</td>
<td>2,1</td>
<td>0,1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frosttage (Min. < 0,0 °C)</td>
<td>19,9</td>
<td>17,6</td>
<td>12,6</td>
<td>3,4</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,1</td>
<td>1,3</td>
<td>8,4</td>
<td>17,0</td>
</tr>
<tr>
<td>Erstage (Max. < 0,0 °C)</td>
<td>9,2</td>
<td>5,9</td>
<td>1,3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,3</td>
<td>7,2</td>
</tr>
<tr>
<td>Mittlere Kaltesumme</td>
<td>66,6</td>
<td>38,7</td>
<td>10,3</td>
<td>0,1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6,5</td>
<td>40,4</td>
<td>162,6</td>
</tr>
<tr>
<td>Mittlere Heizgradsumme</td>
<td>637,6</td>
<td>552,6</td>
<td>504,3</td>
<td>351,5</td>
<td>129,3</td>
<td>28,8</td>
<td>5,3</td>
<td>3,4</td>
<td>75,0</td>
<td>329,3</td>
<td>470,3</td>
<td>590,0</td>
</tr>
</tbody>
</table>

Bewölkung

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlere Bewölkung (in Achteln)</td>
<td>6,0</td>
<td>5,6</td>
<td>5,3</td>
<td>5,0</td>
<td>4,7</td>
<td>4,8</td>
<td>4,8</td>
<td>4,5</td>
<td>4,7</td>
<td>5,2</td>
<td>6,0</td>
<td>6,2</td>
</tr>
<tr>
<td>Mittlere Bewölkung (in %)</td>
<td>75</td>
<td>70</td>
<td>67</td>
<td>63</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>56</td>
<td>59</td>
<td>65</td>
<td>76</td>
<td>78</td>
</tr>
</tbody>
</table>

Sonnenstrahlung

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlere Summe (Std.)</td>
<td>45,4</td>
<td>72,3</td>
<td>122,1</td>
<td>157,7</td>
<td>221,6</td>
<td>220,9</td>
<td>218,0</td>
<td>210,2</td>
<td>156,3</td>
<td>110,8</td>
<td>52,4</td>
<td>37,4</td>
</tr>
<tr>
<td>in % vom astronomenmisch möglich</td>
<td>17,7</td>
<td>26,2</td>
<td>33,3</td>
<td>37,9</td>
<td>45,5</td>
<td>44,0</td>
<td>43,2</td>
<td>46,2</td>
<td>41,0</td>
<td>33,5</td>
<td>19,8</td>
<td>15,6</td>
</tr>
</tbody>
</table>

Luftfeuchtigkeit

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlere relative Feuchtigkeit (%)</td>
<td>85</td>
<td>82</td>
<td>75</td>
<td>69</td>
<td>67</td>
<td>69</td>
<td>70</td>
<td>73</td>
<td>80</td>
<td>83</td>
<td>85</td>
<td>86</td>
</tr>
</tbody>
</table>

Niederschlag

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlere Summe (l/m²)</td>
<td>43,2</td>
<td>36,6</td>
<td>37,5</td>
<td>42,2</td>
<td>55,3</td>
<td>70,7</td>
<td>53,1</td>
<td>65,3</td>
<td>45,5</td>
<td>35,8</td>
<td>49,5</td>
<td>54,5</td>
</tr>
<tr>
<td>Zahl der Tage mit ≥ 0,1 l/m² Niederschlag</td>
<td>17,8</td>
<td>14,3</td>
<td>15,5</td>
<td>14,2</td>
<td>14,0</td>
<td>14,9</td>
<td>13,9</td>
<td>13,4</td>
<td>14,4</td>
<td>14,3</td>
<td>17,0</td>
<td>18,2</td>
</tr>
<tr>
<td>Tage mit Schneedecke ≥ 1 cm</td>
<td>15,3</td>
<td>10,8</td>
<td>5,0</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,2</td>
<td>8,2</td>
</tr>
<tr>
<td>Tage mit Nebel</td>
<td>5,3</td>
<td>4,2</td>
<td>1,6</td>
<td>1,0</td>
<td>0,6</td>
<td>0,3</td>
<td>0,3</td>
<td>1,0</td>
<td>1,8</td>
<td>5,9</td>
<td>5,4</td>
<td>4,9</td>
</tr>
</tbody>
</table>
2.4 Flächennutzung

Für die Luftreinhalteplanung sind insbesondere zwei strukturelle Merkmale Berlins von Bedeutung. Dies ist zum einen die gewachsene Stadtstruktur Berlins, die durch die räumliche Nähe und Durchmischung von Wohn- und Gewerbegebieten gekennzeichnet sind, und zum anderen die Größe der Berliner Innenstadt.

und Reinickendorf und entlang der S-Bahn-Strecke in Richtung Lichtenrade. Kleinere gewerblich genutzte Flächen sowie Flächen für kommunale Versorgungsbetriebe befinden sich verstreut im gesamten Stadtgebiet.

2.5 Entwicklung der Raumstruktur

Um die Entwicklung der Zentren in Berlin gesamtstädtisch zu steuern, wurde im März 2011 vom Senat Berlin der Stadtentwicklungsplan (STEP) „Zentren 3“ verabschiedet. Seine Ziele sind u.a. die Sicherung der Polyzentralität, die Stärkung der Funktionsmischungen in den Zentren, der Erhalt der Nahversorgung und die stadtverträgliche Integration großflächiger Einzelhandelseinrichtungen. Damit berührt der STEP „Zentren 3“ auch Aspekte der Luft-
reinhaltung, da der Einzelhandel einen erheblichen Einfluss auf die Verkehrsentstehung und damit auf verkehrsbedingte Luftschadstoffe hat. Der STEP „Zentren 3“ enthält daher für die Entwicklung von Einzelhandelsstandorten auch Empfehlungen und Prüfschritte, die die Ziele der Verkehrsvermeidung und Stärkung der Nahmobilität unterstützen. Dazu gehören die verkehrliche Integration durch eine sehr gute Anbindung an das ÖPNV-Netz, Begrenzung der Stellplatzanzahl (ohne dazu jedoch konkrete Zahlen festzulegen), eine gute Erreichbarkeit zu Fuß oder mit dem Rad sowie bei großen Fachmärkten die städtebaulich und verkehrlich verträgliche Anlage der Zufahrten und internen Erschließungsstraßen. Fachmärkte sollen bevorzugt an geeigneten Standorten gebündelt werden (Fachmarktagglomeration).

2.6 Entwicklung des Verkehrs in Berlin
Der Straßenverkehr ist trotz der erreichten Emissionsminderungen weiterhin die wichtigste Einzelquelle für die aktuelle und zukünftige Luftschadstoffbelastung in Berlin (s. Kapitel 5) und damit das entscheidende Handlungsfeld der Luftreinhalteplanung. Vor diesem Hintergrund wird in diesem Abschnitt auf die Entwicklung der Verkehrsinfrastruktur und der Verkehrsnachfrage in den letzten 10 Jahren eingegangen.

2.6.1 Verkehrsinfrastruktur
Berlin besitzt eine auch im nationalen und internationalen Vergleich hochwertige und leistungsfähige Verkehrsinfrastruktur für den Straßen- und Schienenverkehr, die insgesamt über ausreichend Kapazitätsreserven verfügt. Das Straßenetz weist eine ausgeprägte radiale Struktur mit einer starken Bündelungswirkung der Verkehrs auf, was einerseits zu Belastungsschwerpunkten durch verkehrsbedingte Luftschadstoffe führt, andererseits Verkehrs aus anderen Gebieten heraushält, was besonders für den Lärmschutz in Wohngebieten wichtig ist.

Schwerpunkt der Infrastrukturrenwicklung seit 1990 war die Verknüpfung der Netze Ost- und Westberlins, die aufgrund der mehr als 50-jährigen getrennten Entwicklung erhebliche Strukturschiede aufwiesen. Hierzu gehörten die Wiederinbetriebnahme von stillgelegten oder unterbrochenen Netzteilen, Netzverknüpfungen, Modernisierungen sowie
Luftreinhalteplan 2011 bis 2017 für Berlin | 2 Allgemeine Informationen

Wichtige Straßenbaumaßnahmen der letzten Jahre mit netzweiter Bedeutung waren:

- Fertigstellung des Tunnels Ortsteil Britz im Jahr 2000 und Weiterführung der A100 bis zur Grenzallee im Jahr 2004
- Fertigstellung der A113 im Mai 2008 und damit der Anschluss des Stadtrings A100 an das überregionale Autobahnnetz (A10) im Südosten der Stadt
- Bau von Abschnitten der Tangentialen Verbindung Ost (TVO) als Teil einer überregionalen Straßenplanung zwischen Adlergestell (B96a) und Alt Biesdorf (B1/5)

Es ist zu erkennen, dass das öffentliche Straßenetz zwischen 2005 und 2009 um etwa 70 km (+1,3 % der Gesamtänge) und das ÖPNV-Netz um 19 km (+0,8 %) gewachsen ist. Die größte Dynamik weist das Wachstum der Radverkehrsanlagen auf, deren Länge von 2005 bis 2009 um 356 km oder 27 %, gegenüber 2002 sogar um 641 km oder 62 % wuchs. Auch die Zahl der Radabstellanlagen konnte weiter gesteigert werden. Beim Radverkehr besteht jedoch noch immer der größte Nachholbedarf, denn das Radverkehrsnetz weist weiterhin viele Lücken auf und erreicht nur einen Bruchteil der Länge des Netzes des motorisierten Verkehrs.

| Tabelle 2.3: Kenndaten für die Entwicklung der Verkehrsinfrastruktur in Berlin |
|--------------------------|---------|---------|---------|
| Öffentliche Straßen | Einheit | 2001 | 2005/6 | 2009 |
| davon Bundesautobahnen | km | 5.377,2 | 5.341,7 | 5.413,1 |
| Kraftfahrzeuge gesamt* | Tausend | 1.294,5 | 1.262,2 | 1.266,9 |
| Parkraumbewirtschaftungszonen* | Stellplätze | 47.726 | 59.674 | 80.980 |
| ÖPNV-Netz gesamt | km | 2.462,2 | 2.481,2 |
| U-Bahn | km | 144,2 | 144,2 | 146,3 |
| Straßenbahn | km | 187,7 | 187,7 | 189,7 |
| Buslinienlängea | km | 1.662,0 | 1.675,0 |
| S-Bahn* | km | 251,8 | 257,0 | 257,0 |
| Regionalbahn* | km | 156,0 | 211,3 | 213,2 |
| Busspuren* | km | 101,5 | 101,7 | 101,5 |
| Länge Radverkehrswege* | km | 1.030,0 | 1.315,0 | 1.671,0 |
| Radabstellanlagen* | Stellplätze | 16.500 | 24.500 | 26.600 |

* Senatsverwaltung für Stadtentwicklung: Mobilität der Stadt (Mobilität der Stadt – Berliner Verkehr in Zahlen Ausgabe 2010 Berlin 2011 (erste Spalte Parkraumbewirtschaftung 2003))
a Angabe erst ab 2006, da 2004 das Berechnungsverfahren geändert wurde und Werte nicht vergleichbar sind.
2.6.2 Entwicklung der Verkehrsnachfrage

Abbildung 2.6: Relative Veränderung der Verkehrsmengen von 2002 bis 2010 an 36 ausgewählten Dauerzählstellen für den gesamten Kfz-Verkehr (Pkw + Lkw) und den Lkw-Verkehr

Entwicklungen im Personenverkehr

Tabelle 2.4: Entwicklung der Verkehrsnachfragea im Personenverkehr

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖPNV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-Bahn Mio. Nutz-kmb</td>
<td>20,4</td>
<td>20,2</td>
<td>20,1</td>
</tr>
<tr>
<td>Straßenbahn Mio. Nutz-km</td>
<td>21,0</td>
<td>20,5</td>
<td>19,0</td>
</tr>
<tr>
<td>Bus Mio. Nutz-km</td>
<td>91,0</td>
<td>89,1</td>
<td>87,6</td>
</tr>
<tr>
<td>S-Bahn Mio. Zug-km</td>
<td>29,0</td>
<td>29,0</td>
<td>25,0c</td>
</tr>
<tr>
<td>Fahrgastzahlen ÖPNV</td>
<td>Mio.</td>
<td>1.203</td>
<td>1.307</td>
</tr>
</tbody>
</table>

Radverkehr

<table>
<thead>
<tr>
<th>Radverkehr</th>
<th>2001=100 %</th>
<th>2003</th>
<th>2005</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrradbesitz je 1.000 Ew.</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radverkehrsindex</td>
<td>%</td>
<td>101</td>
<td>111</td>
<td>132</td>
</tr>
</tbody>
</table>

Pkw-Verkehr

| Pkw-Besitz je 1.000 Ew. | 325 | 319 | 324 |
| Pkw-Fahrleistungd Mio. km/a | 11.021,4 | 10.405,2 |

a Quelle soweit nicht anders vermerkt: Senatsverwaltung für Stadtentwicklung: Mobilität der Stadt – Berliner Verkehr in Zahlen Ausgabe 2010. Berlin 2011
b U-/Straßenbahn Nutzzugkilometer, Bus Nutzwagenkilometer
c Rückgang durch die S-Bahnkrise
d Fahrleistung aus den Erhebungen zu den Emissionskatastrern Verkehr; Basis: amtliche Verkehrszählung

Der Rückgang des Pkw-Verkehrs und die Zunahme der Verkehrsleistungen im Umweltverbund (ÖPNV, Fuß- und Radverkehr) spiegeln sich auch deutlich in der Veränderung der Wegeanteile nach Verkehrsmitteln (Modal-Split) wieder. Hier ist Berlin in Deutschland Spitzenreiter bei der Wahl der Verkehrsmittel des Umweltverbundes, die zusammen im Mittel für den gesamten Personenverkehr einen Anteil von 68 % erreichen, während der Pkw im Gesamtverkehr nur für 32 % aller Wege verwendet wird (s. Abbildung 2.7, rechts). Gegenüber der Erhebung von 1998 mit einem Pkw-Anteil von 38 % ist die Pkw-Nutzung in Berlin um etwa 16 % gesunken. Im Bundesdurchschnitt lag 2008 der Anteil des Pkw bei 58 % aller Wege, der durchschnittliche Anteil in Städten über 500.000 Einwohner betrug 43 %20.

Güter- und Wirtschaftsverkehr
Wie Abbildung 2.6 zeigt, unterliegt der Lkw-Verkehr stärkeren Schwankungen, die in erster Linie konjunkturell bedingt sind. Die tendenzielle Abnahme in den letzten Jahren ist aber auch Ausdruck der sich wandelnden Wirtschaftsstruktur mit einem wachsenden Dienstleistungssektor und einer rückläufigen Zahl produzierender Betriebe. Der Güterverkehr inklusive des innerstädtischen Verkehr wird weiterhin vom Lkw mit einem Anteil von 85 % dominiert, die Schiene erreicht einen Anteil von 8 %, das Binnenschiff 7 %.

Ein stark wachsendes Segment des Güterverkehrs stellt der Lieferverkehr mit leichten Nutzfahrzeugen im KEP-Markt (Kurier-, Express- und Paketdienste) dar, z.B. durch zunehmenden Warenbezug über E-Commerce und Internetbestellungen mit der Anforderung nach schnellen und kleinsteilen Lieferungen.

Die in Berlin gewerblich zugelassen Kraftfahrzeuge legen im Wirtschaftsverkehr täglich insgesamt rund 500.000 Fahrten und ca. 11,5 Millionen Fahrzeugkilometer zurück. Etwa 2/3 davon sind dem Personenwirtschaftsverkehr („Verkehr in Ausübung des Berufes“ mit Aktentasche, Material etc.) zuzurechnen; aufgrund des Wachstums im Dienstleistungssektor ist hier von einer weiter steigenden Bedeutung auszugehen.

Stadt-Umland-Verkehr
Durch die nachholende Wohn- und Wirtschaftssuburbanisierung hat sich seit den 1990er Jahren der funktionale Verflechtungsbedarf zwischen Berlin und Brandenburg weiter vergrößert.

3 Die Luftqualität in Berlin: Art und Beurteilung der Verschmutzung

3.1 Beurteilungsgrundlagen

Die wichtigste Grundlage jeder Luftreinhalteplanung ist eine möglichst vollständige zeitliche und räumliche Bestandsaufnahme der Luftbelastungssituation in Bezug auf die Immissionsgrenzwerte. Die Europäische Luftqualitätsrichtlinie 2008/50/EG bzw. die 39. BImSchV sehen dazu die folgenden Möglichkeiten vor:

a) kontinuierliche, zeitlich hoch aufgelöste Messungen der Luftqualität:
 In allen Gebieten und Ballungsräumen, in denen die Luftbelastung die Grenzwerte zu überschreiten droht, muss eine definierte Mindestanzahl von Messstellen pro Einwohner, insbesondere am Ort der mutmaßlich höchsten Exposition der Bevölkerung, eingerichtet werden. Demnach sind in Berlin mindestens sieben Messstellen für Feinstaub PM$_{10}$ und Stickstoffdioxid sowie mindestens drei Messstellen für Feinstaub PM$_{2.5}$ einzurichten.

Als Ergänzung zu solchen kontinuierlichen Messstationen dienen

b) Messungen in Form von räumlichen und zeitlichen Stichproben oder zeitlich aggregier-ten Messungen mit vereinfachten Verfahren,

c) statistische Methoden zur Extra- und Interpolation und
d) die Anwendung von Ausbreitungsmodellen.

Zu (a) und (b) betreibt die Senatsverwaltung für Stadtentwicklung und Umwelt ein umfangreiches Messnetz, das im nachfolgenden Abschnitt kurz beschrieben wird.

Da aus Kosten- und Kapazitätsgründen nur eine begrenzte Anzahl von Messstationen betrieben werden kann, wird zusätzlich intensiv Gebrauch von Simulationsmodellen gemacht. Diese haben den Vorteil,

- dass Informationen über die räumliche Verteilung der Luftbelastung zwischen den Luftgüte-Messstellen gewonnen werden können und
- dass die zukünftige Entwicklung der Schadstoffbelastung auf der Basis von Annahmen in Szenariorechnungen (z.B. verstärkter Einsatz von Minderungstechnologie durch Partikelfilter für Dieselfahrzeuge) abgeschätzt werden kann.

3.1.1 Messungen der Immissionsbelastung – das Berliner Luftgüte-Messnetz (BLUME)

Die Luftgüte Berlins wird seit 1975 durch das Berliner Luftgüte-Messnetz (BLUME) kontinuierlich überwacht.

Das Messnetz bestand 2010 aus 16 ortsfesten Messstationen für Luftschadstoffe, von denen sechs an stark befahrenen Straßen, fünf im innerstädtischen Hintergrund (Wohn- und Gewerbegebieten) und fünf am Stadtrand oder im Waldbereich lagen. Zur Messung der Luftschadstoffe werden die vorgeschriebenen Standardverfahren eingesetzt. Zusätzlich wurden alle automatischen Staubmessgeräte mit einem Rußmesskopf ausgestattet, mit dem kontinuierlich die Schwärzung des Filters als Maß für die Konzentration von elementarem Kohlenstoff (Ruß) bestimmt wird. Aufgrund eines Gerätetypwechsels können ab 2011 nicht mehr an allen Messstandorten Rußmessköpfe betrieben werden. In den Messstationen werden Stickoxide (NO und NO$_2$), Ozon (O$_3$), Schwebstaub (PM$_{10}$, PM$_{2.5}$) und Ruß, Benzol, Kohlenmonoxid (CO) sowie Schwefeldioxid (SO$_2$) gemessen (allerdings nicht alle Komponenten in jeder Station). An drei Messstellen werden in der PM$_{10}$-Fraktion zusätzlich
die Schwermetalle Blei (Pb), Cadmium (Cd), Arsen (As) und Nickel (Ni) und an fünf Messstellen Benzo[a]pyren (BaP) bestimmt. Einen Überblick über die Ausstattung aller Messstationen gibt Tabelle A-1 im Anhang.

An drei Stationen im innerstädtischen Hintergrund werden zur Bestimmung des „Average Exposure Indicator“ (AEI) nach der 39. BlmSchV und zusätzlich an einer Station in einer Hauptverkehrsstraße gravimetrische Partikelmessungen der PM$_{2.5}$-Fraktion durchgeführt, die in einer zeitlichen Auflösung von Tagesmittelwerten vorliegen.

Im Jahr 2011 wurden an zwei Stationen (Marienfelde und Schöneberg) die Staubmessgeräte abgebaut. Denn die Messergebnisse dieser Stationen führen aufgrund der engen Korrelation mit anderen Stationen der jeweiligen Kategorie nicht zu einem zusätzlichen Informationsgewinn für die Beurteilung der Luftqualität, verursachen aber erhebliche Kosten.

Zusätzlich gibt es eine meteorologische Station und einen Messbus für den mobilen Einsatz.

Die Verteilung aller Messstandorte in Berlin zeigt die Abbildung 3.1

3.1.2 Simulation der Luftbelastung mit Modellen

Modelle zur Berechnung der Ausbreitung von Luftschadstoffen erlauben es, die kausalen Zusammenhänge zwischen den Emissionen der Luftschadstoffe und der daraus resultierenden Luftbelastung (Immissionen) deutlich zu machen. Modelle können danach zur räumlichen Darstellung der Schadstoffverteilung und der Maßnahmenplanung in allen Skalenbereichen (national, Ballungsgebiet, Straße) eingesetzt werden.

Wie in Kapitel 5 ausführlich dargelegt, bestehen Zusammenhänge zwischen Schadstoffquelle und Rezeptor über weite Entfernungen hinweg, weil Schadstoffe, wie Feinstaub (PM$_{10}$) oder Ozon, sich teilweise erst durch luftchemische Vorgänge in der Atmosphäre bilden und über mehrere Tage dort verbleiben können. Bei der in Mitteleuropa vergleichsweise hohen Dichte von Quellen für Luftschadstoffe entsteht ein großräumig verteilter Hintergrundpegel, der in nicht unerheblichem Maße zur Überschreitung, insbesondere der PM$_{10}$-Grenzwerte, beiträgt und damit den lokalen Handlungsspielraum zur Minderung der Luftbelastung einschränkt. Zur Berechnung dieser Hintergrundbelastung und ihrer zukünftigen Entwicklung werden daher Modelle benötigt, die nicht nur Berlin und seine un-
Luftreinhalteplan 2011 bis 2017 für Berlin

3 Die Luftqualität in Berlin: Art und Beurteilung der Verschmutzung

BLUME-Messnetz
MC 010 Mitte, Amrumer Str., Limburger Str.
MC 018 Schöneberg, Belziger Straße 52
MC 027 Marienfelde, Schichauweg 60
MC 032 Grunewald, Jagen 91
MC 042 Nansenstr. 10
MC 077 Buch, Wiltbergstr. 50
MC 085 Friedrichshagen, Müggeleseedamm 307-310
MC 115 Hardenbergplatz
MC 124 Mariendorfer Damm 148
MC 145 Frohnau, Jägerstieg 1
MC 171 Brückenstr. 6
MC 174 Frankfurter Allee 86 b
MC 176 Schilhornstr. 76
MC 143 Silbersteinstr. 1
MC 220 Karl-Marx-Str. 77
MC 282 Karls horst

RUBIS-Messnetz
MP 501 Berliner Allee 118
MP 504 Beusselstr. 66
MP 505 Potsdamer Str. 102
MP 507 Michael Brückner Str. 4
MP 513 Spreestr. 2
MP 514 Alt Friedrichsfelde 8 a
MP 517 Nansenstr. 10, MC 042
MP 519 Frankfurter Allee 86 b, MC 174
MP 521 Schilhornstr. 76, MC 117
MP 522 Silbersteinstr. 1, MC 143
MP 523 Karl-Marx-Str. 7, MC 220
MP 525 Leipziger Str. 32
MP 528 Kantsstr. 117
MP 530 Hauptstr. 54
MP 533 Hermannstr. 120
MP 535 Buch, MC 077, Buch
MP 537 Alt Moabit 63
MP 539 Schloßstr. 29
MP 542 Tempelhofer Damm 148
MP 545 Sonnenallee 68
MP 547 Landsberger Allee 6-8
MP 555 Hermannplatz
MP 559 Buschkragalle 8
MP 562 Friedrichstr. 172
MP 573 Badstr. 67
MP 576 Spandau, Klosterstr. 12
MP 578 Glienicker Weg 95 - 115
MP 579 Eichbornendamm 23/25
MP 580 Spandauer Damm 51

Abbildung 3.1: Lage der Messstandorte in Berlin 2010

Für die einzelnen Skalen werden die folgenden Modelle eingesetzt:

Straßenschluchtskala

An den Straßenabschnitten mit Messstandorten wurde die Luftbelastung zusätzlich mit dem aufwändigeren Programm IMMIScpb, einem analytisch-empirischen Ausbreitungsmodell für bebaute Straßenräume, modelliert. Es ermöglicht die Berechnung von Stundenwerten der durch den lokalen Verkehr erzeugten Immissionsbelastung an beliebigen Aufpunkten (Rezeptoren) in einer Straßenschlucht mit differierender Bebauungshöhe und mit winddurchlässigen Gebäudelücken auf der Basis leicht zugänglicher meteorologischer Grö-

Abbildung 3.2: Schema der räumlichen Ausdehnung der in Berlin für die Luftreinhalteplanung angewandten Ausbreitungsmodelle sowie deren Auflösung

Für die einzelnen Skalen werden die folgenden Modelle eingesetzt:

Straßenschluchtskala

An den Straßenabschnitten mit Messstandorten wurde die Luftbelastung zusätzlich mit dem aufwändigeren Programm IMMIScpb, einem analytisch-empirischen Ausbreitungsmodell für bebaute Straßenräume, modelliert. Es ermöglicht die Berechnung von Stundenwerten der durch den lokalen Verkehr erzeugten Immissionsbelastung an beliebigen Aufpunkten (Rezeptoren) in einer Straßenschlucht mit differierender Bebauungshöhe und mit winddurchlässigen Gebäudelücken auf der Basis leicht zugänglicher meteorologischer Grö-

Die für beide Programme zur Bestimmung der Gesamtkonzentration der Luftschadstoffe erforderliche städtische Hintergrundbelastung, die durch die übrigen Emissionen in der Stadt hervorgerufen wird, wurde mit dem Programm IMMIS^™ berechnet.

Städtische Hintergrundbelastung

IMMIS^™ ist ein immissionsklimatologisches Ausbreitungsmodell zur Berechnung der flächenhaft Luftschadstoffbelastung auf städtischer Ebene. Das Modell beschreibt den stationär behandelten Prozess der Verdünnung und des Transports von Schadstoffen aus Punkt-, Linien- oder Flächenquellen unter der Annahme einer Gaußschen Normalverteilung. Auf der Basis der Gaußschen Rauchfahnengleichung berechnet IMMIS^™ die Immissionsbeiträge aus den Emissionen aller erfassten Flächen-, Linien- und Punktquellen der Stadt. Der insbesondere bei Feinstaub (PM_{10}) beträchtliche Beitrag von Quellen außerhalb des Ballungsraumes wird von IMMIS^™ nicht erfasst, d.h. die regionale Hintergrundbelastung muss separat modelliert werden.

Regionale Hintergrundbelastung

3.2 Beurteilung der Luftqualität anhand von Messungen

3.2.1 Stickstoffdioxid

Die Konzentration von Stickstoffdioxid (NO2) wird seit Jahren an einer Vielzahl von Messstellen in der Stadt registriert. Die Abbildung 3.3 zeigt den langjährigen Verlauf der mittleren Belastung an drei Kategorien von Messstellen, an denen kontinuierlich zeitlich hoch aufgelöste Messungen vorgenommen werden:

- an fünf verkehrsnahen Messstellen an Hauptverkehrsstraßen (rote Kurve),
- an drei Messstellen, die für die Belastung von Wohnstraßen der Innenstadt mit wenig Verkehr (blaue Kurve) repräsentativ sind und
- an fünf Messstellen am Stadtrand (grüne Kurve).

Im Gegensatz dazu haben die Werte für Stickstoffmonoxid (NO) – wiedergegeben durch die pinkfarbene Kurve – an den verkehrsnahen Messstellen bis 2007 kontinuierlich abgenommen, von 98 µg/m³ im Jahr 1999 auf 44 µg/m³ im Jahr 2007. Eine weitere Abnahme auf 42 µg/m³ wurde erst wieder 2010 erreicht.

Die offensichtliche Diskrepanz zwischen der Entwicklung der lufthygienisch relevanten NO₂-Belastung und den NO₂-Emissionen des Straßenverkehrs ist kein auf Berlin beschränktes Phänomen, sondern wird in vielen europäischen Ballungsräumen beobachtet. Sie beruht auf einem gestiegenen Anteil von Dieselfahrzeugen und der Verschiebung des NO/NO₂-Verhältnisses in Richtung NO₂ durch Einführung des Oxidationskatalysators bei Dieselfahrzeugen.

Die Entwicklung der Jahresmittelwerte der Jahre 2005 bis 2010 für die einzelnen automatischen Messstationen zeigt die folgende Tabelle 3.1. Während an allen Stationen am Stadtrand und im innerstädtischen Hintergrund die Grenzwerte durchgehend eingehalten wurden, lagen die NO₂-Jahresmittelwerte an allen Straßenstationen in allen Jahren über dem Grenzwert von 40 µg/m³. Überschreitungen des Kurzzeitgrenzwertes traten jedoch nicht auf.
Tabelle 3.1: Jahresmittelwerte für Stickstoffdioxid in Berlin 2005-2010

<table>
<thead>
<tr>
<th>Station</th>
<th>Standort</th>
<th>NO₂ Jahresmittelwert in [µg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2005</td>
</tr>
<tr>
<td>Nr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stadtrand</td>
</tr>
<tr>
<td>027</td>
<td>Marienfelde</td>
<td>16</td>
</tr>
<tr>
<td>032</td>
<td>Grunewald</td>
<td>17</td>
</tr>
<tr>
<td>077</td>
<td>Buch</td>
<td>19</td>
</tr>
<tr>
<td>085</td>
<td>Friedrichshagen</td>
<td>17</td>
</tr>
<tr>
<td>145</td>
<td>Frohnau</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>innerstädtischer Hintergrund</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Wedding</td>
<td>29</td>
</tr>
<tr>
<td>018</td>
<td>Schöneberg</td>
<td>32</td>
</tr>
<tr>
<td>042</td>
<td>Neukölln</td>
<td>31</td>
</tr>
<tr>
<td>171</td>
<td>Mitte</td>
<td>30</td>
</tr>
<tr>
<td>282</td>
<td>Karlshorst</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Hauptverkehrsstraße</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Hardenbergplatz</td>
<td>59</td>
</tr>
<tr>
<td>117</td>
<td>Schildhornstr.</td>
<td>61</td>
</tr>
<tr>
<td>124</td>
<td>Mariendorfer Damm</td>
<td>-</td>
</tr>
<tr>
<td>143</td>
<td>Silbersteinstr.</td>
<td>49</td>
</tr>
<tr>
<td>174</td>
<td>Frankfurter Allee</td>
<td>44</td>
</tr>
<tr>
<td>220</td>
<td>Karl-Marx-Str.</td>
<td>59</td>
</tr>
</tbody>
</table>

Fett: Überschreitungen des NO₂-Jahresgrenzwertes von 40 µg/m³

3.2.2 Feinstaub PM₁₀

Die rote Kurve zeigt die Belastung als Mittelwert über vier verkehrsnahe Messstellen (Hauptverkehrsstraßen), während die blaue und die dunkelgrüne Linie die Konzentrationen an drei Messstellen in innerstädtischen Wohngebieten bzw. an vier Messpunkten am Stadtrand wiedergibt. Zum Vergleich mit den städtischen Messwerten wurden Daten von bis zu vier ländlichen Hintergrundstationen in Brandenburg hinzugefügt.

Die Jahresmittelwerte für die einzelnen Stationen sind für die Jahre 2005 bis 2010 in Tabelle 3.2 zusammengestellt. Hinsichtlich des Grenzwertes für das Jahresmittel traten bei Feinstaub keine Überschreitungen auf.

Tabelle 3.2 zeigt, dass an den meisten Messstationen die Feinstaubkonzentration im Jahresmittel im Jahr 2010 gegenüber 2009 um etwa 1 µg/m3 angestiegen ist. Dies lässt sich auf die ungünstigeren meteorologischen Bedingungen im Jahr 2010 zurückführen (s. Kapitel 5). Wie Auswertungen28 zur Umweltzone gezeigt haben, wäre jedoch ohne die Emissionsminderung im Straßenverkehr durch die Umweltzone ein etwa 2 µg/m3 höherer Jahresmittelwert zu erwarten gewesen. D.h. der Anstieg von 2009 zu 2010 hätte gerade an den Straßenstationen aufgrund der schlechteren meteorologischen Ausbreitungsbedingungen für die Fahrzeugabgase im Mittel nicht 1 µg/m3, sondern etwa 3 µg/m3 betragen.

Tabelle 3.2: Jahresmittelwerte für Feinstaub PM$_{10}$ in Berlin 2005-2010

<table>
<thead>
<tr>
<th>Station</th>
<th>Standort</th>
<th>Jahresmittelwert in [µg/m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2005</td>
</tr>
<tr>
<td>Stadtrand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>Marienfelde</td>
<td>24</td>
</tr>
<tr>
<td>032</td>
<td>Grunewald</td>
<td>21</td>
</tr>
<tr>
<td>077</td>
<td>Buch</td>
<td>24</td>
</tr>
<tr>
<td>085</td>
<td>Friedrichshagen</td>
<td>23</td>
</tr>
<tr>
<td>innerstädtischer Hintergrund</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Wedding</td>
<td>25</td>
</tr>
<tr>
<td>018</td>
<td>Schöneberg</td>
<td>25</td>
</tr>
<tr>
<td>042</td>
<td>Neukölln</td>
<td>28</td>
</tr>
<tr>
<td>171</td>
<td>Mitte</td>
<td>29</td>
</tr>
<tr>
<td>Hauptverkehrsstraße</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Hardenbergpl.</td>
<td>32</td>
</tr>
<tr>
<td>117</td>
<td>Schildhornstr.</td>
<td>36</td>
</tr>
<tr>
<td>124</td>
<td>Mariendorfer Damm</td>
<td>-</td>
</tr>
<tr>
<td>143</td>
<td>Silbersteinstr.</td>
<td>38</td>
</tr>
<tr>
<td>174</td>
<td>Frankfurter Allee</td>
<td>37</td>
</tr>
<tr>
<td>220</td>
<td>Karl-Marx-Str.</td>
<td>37</td>
</tr>
</tbody>
</table>

* = Baustellteneinfluss

Tabelle 3.3: Anzahl der Überschreitung des Tagesgrenzwertes für PM$_{10}$ in Berlin 2005-2010

<table>
<thead>
<tr>
<th>Station</th>
<th>Standort</th>
<th>Anzahl der Tage mit Tagesmittelwerten über 50 µg/m³ pro Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nr.</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>Stadtrand</td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>Marienfelde</td>
<td>18</td>
</tr>
<tr>
<td>032</td>
<td>Grunewald</td>
<td>11</td>
</tr>
<tr>
<td>077</td>
<td>Buch</td>
<td>17</td>
</tr>
<tr>
<td>085</td>
<td>Friedrichshagen</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>innerstädtischer Hintergrund</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Wedding</td>
<td>21</td>
</tr>
<tr>
<td>018</td>
<td>Schöneberg</td>
<td>21</td>
</tr>
<tr>
<td>042</td>
<td>Neukölln</td>
<td>30</td>
</tr>
<tr>
<td>171</td>
<td>Mitte</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Straße</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Hardenbergplatz</td>
<td>44</td>
</tr>
<tr>
<td>117</td>
<td>Schildhornstr.</td>
<td>60</td>
</tr>
<tr>
<td>124</td>
<td>Mariendorfer Damm</td>
<td>-</td>
</tr>
<tr>
<td>143</td>
<td>Silbersteinstr.</td>
<td>74</td>
</tr>
<tr>
<td>174</td>
<td>Frankfurter Allee</td>
<td>73</td>
</tr>
<tr>
<td>220</td>
<td>Karl-Marx-Str.</td>
<td>59</td>
</tr>
</tbody>
</table>

*N = Baustelleneinfluss; Fett: mehr als 35 Überschreitungen des Tagesgrenzwertes von 50 µg/m³

Nicht nur die Zahl der Überschreitungen des Tagesgrenzwertes, auch die Höhe der einzelnen Tagesmittelwerte unterscheidet sich stark von Jahr zu Jahr. Dies zeigt Abbildung 3.5, aus der auch die in den Jahren 2005 bis 2010 beobachtete Variationsbreite an den einzelnen Messstellen deutlich wird. Dabei wurde die Anzahl der Überschreitungen in Abhängigkeit von der Höhe der Überschreitung dargestellt. Die dunkel gefärbten Teile der Säulen zeigen den Anteil der Überschreitungstage, der auf hohe Tagesmittelwerte mit Konzentrationen von mehr als 20 µg/m³ über der Schwelle von 50 µg/m³ zurückgehen, also mehr als 70 µg/m³ erreichen. Der helle Teil der Säulen gibt den Beitrag der Überschreitungen wieder, die mit weniger als 5 µg/m³, also mit Tagesmitteln bis 55 µg/m³ nur knapp über der Grenze lagen.

In ungünstigen Jahren, wie 2005, 2006 und 2010 sind deutlich höhere Minderungen von mehr als 10 µg/m³ erforderlich, weil schon allein die Zahl der sehr hohen Tageswerte mit einer Belastung von 70 µg/m³ und mehr das erlaubte Kontingent von 35 Überschreitungstagen zu 60 % ausschöpfte. Allerdings würde eine Verbesserung von nur 5 µg/m³ wenigenzur Einhaltung des Grenzwertes in den innerstädtischen Wohngebieten (Messstelle Nansenstraße, Nr. 042) führen.
3.2.3 Feinstaub (PM$_{2.5}$)

Bereits seit 2004 werden PM$_{2.5}$-Partikel, d.h. Partikel bis zu einem aerodynamischen Partikeldurchmesser von 2,5 µm, an der Verkehrsstation Frankfurter Allee in Berlin-Friedrichshain und an der städtischen Hintergrundstation in der Nansenstraße in Berlin-Neukölln gemessen und auf ausgesuchte Inhaltsstoffe untersucht.

Abbildung 3.6 zeigt die Entwicklung des Jahresmittelwertes der PM$_{2.5}$-Konzentrationen an der Nansenstraße als städtische Hintergrundstation sowie die Entwicklung an der Frankfurter Allee als Hauptverkehrsstraße.
In Tabelle 3.4 sind die Jahresmittelwerte für PM$_{2.5}$ seit 2004 zusammengefasst. Der ab 2015 einzuhaltende Ziel/Grenzwert für PM$_{2.5}$ von 25 µg/m3, wurde nur in den Jahren 2005 und 2006 an der Verkehrsstation überschritten und konnte seit 2007 an allen Stationen eingehalten werden.

Tabelle 3.4: Jahresmittelwerte für Feinstaub PM$_{2.5}$ in Berlin 2004 bis 2010

<table>
<thead>
<tr>
<th>Lage</th>
<th>Nr.</th>
<th>Standort</th>
<th>Feinstaub PM$_{2.5}$ Jahresmittelwert in [µg/m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2004</td>
</tr>
<tr>
<td>städtischer Hintergrund</td>
<td>010</td>
<td>Wedding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>042</td>
<td>Neuköln</td>
<td></td>
</tr>
<tr>
<td></td>
<td>171</td>
<td>Mitte</td>
<td></td>
</tr>
<tr>
<td>Straßen</td>
<td>174</td>
<td>Frankfurter Allee</td>
<td></td>
</tr>
</tbody>
</table>

Im Mittel bestehen damit 76 % des PM$_{10}$-Feinstaubs im städtischen Hintergrund aus Partikeln bis zu einer aerodynamischen Durchmesser von 2,5 µm (PM$_{2.5}$). An Straßen beträgt der PM$_{2.5}$-Anteil im Mittel 70 %, da durch Abrieb und Aufwirbelung von Staub durch Straßeverkehr auch gröbere Partikel mit Durchmessern über 2,5 µm freigesetzt werden.

3.2.4 Polyzyklische aromatische Kohlenwasserstoffe (PAK)

Tabelle 3.5: Jahresmittelwerte von Benzo[a]pyren in Berlin 2006-2010

<table>
<thead>
<tr>
<th>Lage</th>
<th>Nr.</th>
<th>Standort</th>
<th>Feinstaub PM$_{2,5}$ Jahresmittelwert in [µg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2006</td>
</tr>
<tr>
<td>Stadtrand</td>
<td>077</td>
<td>Buch</td>
<td>0,65</td>
</tr>
<tr>
<td>städtischer Hintergrund</td>
<td>042</td>
<td>Neuköln</td>
<td>1,32</td>
</tr>
<tr>
<td>Straße</td>
<td>115</td>
<td>Hardenbergplatz</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>Schildhornstr.</td>
<td>1,24</td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>Frankfurter Allee</td>
<td>1,22</td>
</tr>
</tbody>
</table>

Fett: Überschreitung des ab 2013 einzuhaltenden Zielwertes von 1 ng/m³

Sowohl an der Station im städtischen Hintergrund in Neukölln (Nr. 042) als auch an einzelnen Straßenstationen wird der Zielwert in einzelnen Jahren noch überschritten, so dass bis 2013 noch Handlungsbedarf besteht, um die Einhaltung des Zielwertes sicher zu erreichen. Verglichen mit Werten in den 1990er Jahren mit Konzentrationen von etwa 5 ng/m³ ist die Belastung durch BaP jedoch schon um etwa den Faktor 5 zurückgegangen. Ursächlich hierfür ist der weitgehende Ersatz von Kohleheizungen durch andere Heizarten, insbesondere durch Gas und Fernwärme.

3.3 Beurteilung auf der Basis von Modellrechnungen

Die Gesamtbelastung im Hauptstraßennetz von Berlin für das Bezugsjahr 2009 wurde mit geeigneten Konzentrationsklassen der modellierten Jahresmittelwerte von NO$_2$, PM$_{10}$ und PM$_{2,5}$ ausgewertet und kartografisch dargestellt. Für Abschnitte im Hauptverkehrsstraßennetz, auf denen bereits Tempo 30 angeordnet wurde, wurde der bei Auswertungen an der Schildhornstraße festgestellte Minderungseffekt berücksichtigt.

3.3.1 Ergebnisse für Stickstoffdioxid für das Jahr 2009

In Abbildung 3.7 ist zunächst die modellierte NO₂-Konzentrationsverteilung im städtischen Hintergrund dargestellt. Die höchsten Konzentrationen treten in den innerstädtischen Gebieten mit Werten bis zu 28 µg/m³ (an wenigen Orten bis zu 30 µg/m³) auf. Hier führt die hohe Dichte der Hauptverkehrsstraßen zu einer über das ganze Gebiet verteilten höheren Belastung. Erhöhte Belastungen sind entlang eines großen Teils der Stadtautobahn A100 und der Nord-Süd-Achse entlang der Potsdamer Straße zu erkennen. Zum Stadtrand hin fallen die Konzentrationen auf Werte von ca. 10 bis 15 µg/m³.

Die NO₂-Konzentrationen an Hauptverkehrsstraßen, die sich aus der Summe der städtischen Hintergrundbelastung und der Zusatzbelastung durch den lokalen Verkehr ergeben, sind in Abbildung 3.8 dargestellt. Die Farblegende in der kartografischen Darstellung ist so gewählt, dass beim Überschreiten des Jahresmittelgrenzwertes von NO₂ in Höhe von 40 µg/m³ die Straßenabschnitte in rot, blau und braun sowie beim Überschreiten des für die Fristverlängerung relevanten Wertes in Höhe von 60 µg/m³ in schwarz ausgewiesen werden.

Eine Überschreitung des ab 2010 gültigen NO₂-Jahresmittelgrenzwerts von 40 µg/m³ tritt nach den Modellrechnungen in 411 Abschnitten mit einer Gesamtänge von etwa 58 km auf. Betroffen von Grenzwertüberschreitungen sind gerundet 48.000 Personen. Fünf Abschnitte mit einer Gesamtänge von 600 m und 590 Betroffenen weisen einen NO₂-Jahresmittelwert größer als 60 µg/m³ auf und liegen damit über dem Grenzwert zuzüglich der ab 2010 auch bei einer Fristverlängerung einzuhalten den Toleranzmarge. Für weitere etwa 96 km Hauptverkehrsstraßen mit 58.500 Anwohnern wurden NO₂-Konzentrationen von 36 bis 40 µg/m³ berechnet.
Abbildung 3.7: Städtische Hintergrundkonzentrationen für Stickstoffdioxid im Jahr 2009

Jahresmittelwert der berechneten Gesamtvorbelastung
Stickstoffdioxid NO₂ in μg/m³
Basisjahr 2009

10 bis unter 14
14 bis unter 18
18 bis unter 22
22 bis unter 25
über 25
Umweltzone

Abbildung 3.8: Berechnete NO₂-Jahresmittelwerte im Hauptverkehrsstraßenetz 2009

Jahresmittelwert NO₂ in μg/m³
Basisjahr 2009

10 bis unter 38
38 bis unter 40
40 bis unter 42
42 bis unter 44
44 bis unter 60
über 60
Umweltzone

Grenzwert NO₂: 40 μg/m³
3.3.2 Ergebnisse für Feinstaub PM$_{10}$ für das Jahr 2009

Die verwendeten Modelle zur Berechnung der Feinstaubkonzentration im städtischen Hintergrund (IMMISst) und für das Hauptverkehrsstraßennetz (IMMISlu) liefern als Ergebnis nur den Jahresmittelwert, können aber nicht direkt die Anzahl der Überschreitungen des 24h-Grenzwertes berechnen. Hierzu wären die sehr viel aufwändigeren Modellierungen der Zeitreihen notwendig, wobei jedoch die Modelle dabei Episoden mit besonders hohen Konzentrationen in der Regel unterschätzen. Als einfachere, aber hinreichend treffsichere Methodik wurde daher der über mehrere Jahre beobachtete statistische Zusammenhang zwischen dem Jahresmittelwert und der Überschreitungsanzahl des 24h-Grenzwertes verwendet. Aus diesem ergibt sich, dass bei einem Jahresmittelwert von 30 µg/m3 mit 50 % Wahrscheinlichkeit und ab 32 µg/m3 mit großer Sicherheit mit 35 und mehr Überschreitungen des Tagesgrenzwertes gerechnet werden muss.

Die betroffenen Straßen liegen überwiegend in innerstädtischen Bereichen, d.h. vorwiegend innerhalb der Umweltzone, da hier die hohe Bebauungsdichte zu engen Straßen schluchten mit besonders ungünstigen Ausbreitungsbedingungen führt.
Luftreinhalteplan 2011 bis 2017 für Berlin | 3 Die Luftqualität in Berlin: Art und Beurteilung der Verschmutzung

Abbildung 3.9: Städtische Hintergrundkonzentrationen für Feinstaub PM₁₀ im Jahr 2009

Jahresmittelwert der berechneten Gesamtbelastung PM₁₀ in μg/m³
Basisjahr 2009

Abbildung 3.10: Berechnete PM₁₀-Jahresmittelwerte im Hauptstraßennetz von Berlin 2009

Jahresmittelwert PM₁₀ in μg/m³
Basisjahr 2009

Grenzwert PM₁₀: 40 μg/m³
(Überschreitung des 24h-Grenzwertes ab ca. 30 μg/m³ zu erwarten)
3.3.3 Ergebnisse für Feinstaub PM$_{2,5}$ für das Jahr 2009

Die räumliche Konzentrationsverteilung der Partikel bis 2,5 µm Größe (PM$_{2,5}$) im städtischen Hintergrund ist, wie Abbildung 3.11 zeigt, gleichförmiger als die Verteilung von PM$_{10}$ oder Stickstoffdioxid. Gebiete im Außenbereich der Stadt weisen mit 15-16 µg/m3 etwa 2 µg/m3 niedrigere Konzentrationen auf, als die innerstädtischen Bereiche mit 16 bis 18 µg/m3. Nur in wenigen Rasterzellen liegen die Werte über 18 µg/m3. In einer einzigen Zelle wird dabei eine Konzentration von fast 24 µg/m3 erreicht. Dies ist ebenfalls der Ort mit der höchsten PM$_{10}$-Belastung im städtischen Hintergrund.

Abbildung 3.11: Städtische Hintergrundkonzentrationen für Feinstaub PM$_{2.5}$ im Jahr 2009

Jahresmittelwert der berechneten Gesamtvorbelastung PM$_{2.5}$ in μg/m3
Basisjahr 2009

- 14 bis unter 15
- 15 bis unter 16
- 16 bis unter 17
- 17 bis unter 18
- über 18

Umweltzone

Abbildung 3.12: Berechnete PM$_{2.5}$-Jahresmittelwerte im Hauptstraßennetz von Berlin 2009

Jahresmittelwerte PM$_{2.5}$ in μg/m3
Basisjahr 2009

- 10,0 bis unter 20,0
- 20,0 bis unter 22,5
- 22,5 bis unter 25,0
- 25,0 bis unter 27,5
- über 27,5

Umweltzone

Zielwert PM$_{2.5}$: 25 μg/m3 (2010)
Grenzwert PM$_{2.5}$: 25 μg/m3 (2015)
3.4 Sozialräumliche Verteilung der Luftbelastung in Berlin – Modellvorhaben Umweltgerechtigkeit

Zur Bestimmung der Luftbelastung auf der räumlichen Ebene der LOR wurde aus den Ergebnissen der Modellrechnungen für Feinstaub (PM$_{2.5}$) und Stickstoffdioxid unter Berücksichtigung der städtischen Hintergrundkonzentrationen und der verkehrsbedingten Zusatzbelastung an Hauptverkehrsstraßen flächengewichtete Konzentrationen berechnet und in vier Belastungsklassen (gering, mäßig, hoch und sehr hoch) zusammengefasst. Die Verteilung der Luftbelastung auf die 447 Planungsräume (PLR) ist in Abbildung 3.13 zusammen mit dem sozialen Entwicklungindex dargestellt. 69 (15 %) der insgesamt 447 Planungsräume wurden als gering belastet eingestuft. Mit 263 PLR (59 %) fällt mehr als die Hälfte aller PLR in die Kategorie "mäßig belastet". Eine hohe Luftbelastung weisen 54 (12 %) PLR und eine sehr hohe Luftbelastung 61 (14 %) PLR auf.

31 Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz; Handlungsfeld Umweltgerechtigkeit, Umweltpolitische Strategien, Maßnahmen und Instrumente zur Verbesserung der Umweltqualität im Land Berlin, Basisbericht 2011 (noch unveröffentlicht)

Bezogen auf die betroffene Bevölkerung leben 13 % der Berliner Bevölkerung in PLR mit einer sehr hohen und 16 % in PLR mit einer hohen Luftbelastung. Mit 58 % ist mehr als die Hälfte der Bevölkerung mittleren Luftbelastungen ausgesetzt. Nur 13 % der Menschen leben in Gebieten mit niedriger Luftbelastung.

Bezieht man den Entwicklungsindex (EI) wie in Abbildung 3.15 ein, so leben ca. 37 % der Bevölkerung in mäßig belasteten PLR mit einem mittleren EI, gefolgt von jeweils 10 % mit sehr hoher bzw. hoher Luftbelastung und mittlerem EI. Jeweils 8 % der Einwohner befinden sich in mäßig belasteten PLR mit einem hohen/sehr hohen bzw. niedrigen EI. In PLR mit geringer Luftbelastung und einem hohen/sehr hohen EI leben ca. 7 % der Bevölkerung. Es folgen PLR mit jeweils 6 % der Einwohner, die entweder einen sehr niedrigen EI und eine mäßige Belastung oder einen mittleren EI und eine geringe Belastung haben. Jeweils 3 % der Bevölkerung leben in hoch belasteten PLR mit einem sehr niedrigen oder niedrigen EI. 2 % der Bevölkerung leben in sehr hoch belasteten PLR mit einem sehr niedrigen EI und 1 % in PLR mit sehr hoher Belastung und niedrigem EI.
3 Die Luftqualität in Berlin: Art und Beurteilung der Verschmutzung

Abbildung 3.14: Anzahl der Planungsräume nach kombinierter Luftbelastung durch Feinstaub und NO₂ und sozialem Entwicklungsindex im Jahre 2009

Abbildung 3.15: Anteil der Bevölkerung in Prozent nach kombinierter Luftbelastung durch Feinstaub und NO₂ und nach sozialem Entwicklungsindex im Jahre 2009
4 Emission von Luftschadstoffen

4.1 Emissionen in Berlin

Die Emissionen der relevanten Luftschadstoffe werden für die folgenden Verursachergruppen bestimmt:

- genehmigungsbedürftige Anlagen (Industrie),
- nicht genehmigungsbedürftige Feuerungsanlagen (Hausbrand),
- andere nicht genehmigungsbedürftige Anlagen (Kleingewerbe),
- Kfz-Verkehr,
- sonstiger Verkehr (Bahn-, Schiff- und Flugverkehr) und
- sonstige Quellen (z.B. Baustellen, mobile Maschinen).

4.1.1 Industrie-Anlagen (Genehmigungsbedürftige Anlagen)

In Tabelle 4.1 ist die Entwicklung der Zahl der Anlagen nach Anlagenarten dargestellt, für die Emissionserklärungen abgegeben werden mussten.

Für den starken Rückgang der Anlagenanzahl im Bereich Steine und Erden, Glas, Keramik, Baustoffe ist die nachlassende Bautätigkeit in Berlin verantwortlich, was zu einem deutlichen Rückgang bei den Anlagen zur Zement- und Betonherstellung geführt hat. Viele dieser Betriebe unterhalten nur noch nicht genehmigungsbedürftige Lagerplätze in Berlin, für die keine Emissionserklärungen abzugeben sind. Insbesondere die Feinstaub-Emissionen dieser Betriebe sind ab 2008 der Verursachergruppe Kleingewerbe zugeordnet worden.

In der folgenden Tabelle 4.2 ist zu erkennen, dass die Emissionen von Schwefeldioxid (SO₂) und Stickoxiden (NOₓ) aus den Großfeuerungsanlagen (GFA), die ausschließlich zur Anlagenart „Wärmeerzeugung, Bergbau, Energie“ gehören, im Jahre 2008 ca. 95 % der Gesamtemissionen der erklärungspflichtigen Industrieanlagen (EKI) ausmachen, während beim PM₁₀-Feinstaub diese Anlagenart nur 55 % der Industrie-Emissionen verursacht. Diese Daten wurden auch für die Modellrechnungen für das Jahr 2009 verwendet, da keine bedeutenden Änderungen zu erwarten waren.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeerzeugung, Bergbau, Energie</td>
<td>954</td>
<td>356</td>
<td>324</td>
<td>243</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Steine und Erden, Glas, Keramik, Baustoffe</td>
<td>55</td>
<td>40</td>
<td>37</td>
<td>60</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung</td>
<td>124</td>
<td>86</td>
<td>74</td>
<td>53</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td>Chemische Erzeugnisse, Arzneimittel, Mineralöllafenerie und Weiterverarbeitung</td>
<td>58</td>
<td>38</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Oberflächenbehandlung mit organischen Stoffen</td>
<td>70</td>
<td>28</td>
<td>13</td>
<td>13</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Holz, Zellstoff</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Nahrungs-, Genuß- und Futtermittel</td>
<td>98</td>
<td>84</td>
<td>88</td>
<td>76</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Verwertung und Beseitigung von Reststoffen</td>
<td>17</td>
<td>9</td>
<td>15</td>
<td>71</td>
<td>90</td>
<td>47</td>
</tr>
<tr>
<td>Lagerung, Be- und Entladen von Stoffen</td>
<td>61</td>
<td>61</td>
<td>68</td>
<td>57</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>73</td>
<td>159</td>
<td>82</td>
<td>17</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1.513</td>
<td>862</td>
<td>734</td>
<td>620</td>
<td>398</td>
<td>274</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Emissionen der genehmigungsbedürftigen Anlagen in Berlin 2008

<table>
<thead>
<tr>
<th>Anlagenart</th>
<th>NO₂ t/a</th>
<th>PM₁₀ t/a</th>
<th>PM₂,5 t/a</th>
<th>SO₂ t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeerzeugung, Bergbau, Energie</td>
<td>6.233,8</td>
<td>88,7</td>
<td>53,2</td>
<td>2.208,7</td>
</tr>
<tr>
<td>Steine und Erden, Glas, Keramik, Baustoffe</td>
<td>45,1</td>
<td>9,8</td>
<td>3,3</td>
<td>51,2</td>
</tr>
<tr>
<td>Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung</td>
<td>93,0</td>
<td>21,8</td>
<td>16,5</td>
<td>16,8</td>
</tr>
<tr>
<td>Chemische Erzeugnisse, Arzneimittel, Mineralöllafenerie und Weiterverarbeitung</td>
<td>unterhalb der Massenstromgrenze (überwiegend Kohlenwasserstoffemissionen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenbehandlung mit organischen Stoffen</td>
<td>10,4</td>
<td>0,8</td>
<td>0,5</td>
<td>1,0</td>
</tr>
<tr>
<td>Holz, Zellstoff</td>
<td>5,0</td>
<td>1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nahrungs-, Genuß- und Futtermittel</td>
<td>22,0</td>
<td>8,7</td>
<td>5,9</td>
<td>1,2</td>
</tr>
<tr>
<td>Verwertung und Beseitigung von Reststoffen</td>
<td>186,5</td>
<td>11,5</td>
<td>5,6</td>
<td>39,6</td>
</tr>
<tr>
<td>Lagerung, Be- und Entladen von Stoffen</td>
<td>6,2</td>
<td>2,2</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Sonstiges</td>
<td>2,8</td>
<td>0,5</td>
<td>0,3</td>
<td>0,1</td>
</tr>
<tr>
<td>Gesamt</td>
<td>6.594</td>
<td>153</td>
<td>89</td>
<td>2.319</td>
</tr>
</tbody>
</table>
4.1.2 Hausbrand

Die Quellgruppe Hausbrand beschreibt die Emissionen aus nicht genehmigungsbedürftigen Feuerungsanlagen für Berlin. Zu den nicht genehmigungsbedürftigen Feuerungsanlagen zählen alle Feuerungsanlagen entsprechend der Verordnung über kleinere und mittlere Feuerungsanlagen (1. BImSchV). Den Hauptteil der nicht genehmigungsbedürftigen Feuerungsanlagen bilden die Haushalte, aber auch Feuerungsanlagen öffentlicher Einrichtungen und gewerblicher Unternehmen werden dazugezählt.

In Tabelle 4.3 werden die ermittelten Brennstoffverbrauchszahlen des Jahres 2009 mit denjenigen aus der letzten Erhebung im Jahre 1999 verglichen.

Tabelle 4.3: Brennstoffverbrauch in Berlin für den Hausbrand

<table>
<thead>
<tr>
<th>Brennstoff</th>
<th>1999 Verbrauch</th>
<th>2009 Verbrauch</th>
<th>Relative Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizöl leicht</td>
<td>845.000 t/a</td>
<td>570.000 t/a</td>
<td>-32 %</td>
</tr>
<tr>
<td>Gas (Erdgas)</td>
<td>709 Mio. m³/a</td>
<td>1.350 Mio. m³/a</td>
<td>+90 %</td>
</tr>
<tr>
<td>Festbrennstoffe (Kohle/Holz)</td>
<td>90.500 t/a</td>
<td>57.000 t/a</td>
<td>-37 %</td>
</tr>
</tbody>
</table>

Die aus dem Brennstoffverbrauch für alle Gebäude Berlins berechneten Emissionen sind in Tabelle 4.4 aufgegliedert nach Brennstoffen angegeben.

Tabelle 4.4: Emissionen des Sektors Hausbrand 2009 nach Brennstoffen

<table>
<thead>
<tr>
<th>Brennstoff</th>
<th>Brennstoffverbrauch</th>
<th>NOx [t/a]</th>
<th>Staub [t/a]</th>
<th>Benzol [kg/a]</th>
<th>BaP* [kg/a]</th>
<th>SO2 [t/a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdgas</td>
<td>1.350 [Mio m³/a]</td>
<td>1.696</td>
<td>2</td>
<td>845</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Heizöl</td>
<td>570.000 [t/a]</td>
<td>1.026</td>
<td>37</td>
<td>75</td>
<td>0,5</td>
<td>1.112</td>
</tr>
<tr>
<td>Festbrennstoffe</td>
<td>57.000 [t/a]</td>
<td>84</td>
<td>57</td>
<td>6.840</td>
<td>81</td>
<td>161</td>
</tr>
<tr>
<td>Summe**</td>
<td>2.806</td>
<td>95</td>
<td>7.760</td>
<td>81,5</td>
<td>1.294</td>
<td></td>
</tr>
</tbody>
</table>

* = Benzo[a]pyren
** = wegen Rundung der Einzelwerte ggf. Abweichungen möglich

Aus der Tabelle wird deutlich, das Festbrennstoffe besonders hohe spezifische Emissionen von Feinstaub und Benzo[a]pyren (BaP) pro Tonne Brennstoff aufweisen. Obwohl nur ein Zehntel der Masse von Erdöl verbrannt wird, sind die Staubemissionen fast 60 % höher, weil bei der Verbrennung von Festbrennstoffen pro Tonne etwa 1 kg Staub, bei der Verbrennung von einer Tonne Heizöl aber nur etwa 0,064 kg Staub entsteht. Die Verbrennung von Festbrennstoffen ist außerdem in Berlin die mit Abstand wichtigste Quelle für Benzo[a]pyren. Im Vergleich zu den Benzo[a]pyren-Emissionen des Kfz-Verkehrs (s. Tabelle 4.6), sind die Emissionen aus dem Hausbrand um mehr als den Faktor 10 höher. Dies entspricht auch dem Verhältnis auf nationaler Ebene, denn gemäß dem Emissionsinventar des Umweltbundesamtes stammen gut 90 % des Benzo[a]pyren aus dem Bereich des Hausbrands.

Die räumlichen Verteilungen der Emissionen von Stickoxiden bzw. Feinstaub aus dem Hausbrand sind in Abbildung 4.4 und Abbildung 4.5 dargestellt. Die Abbildungen zeigen die flächige Verteilung der Emission aus dem Hausbrand im 1x1 km-Raster mit maximalen Werten in Gebieten mit hoher Altbauten- und Bevölkerungsdichte. Die Staubemissionen

68
4.1.3 Kleingewerbe

Angaben zu den Emissionen können der Tabelle 4.5 entnommen werden. Ein Teil der auch dem Gewerbe zurechenbaren Emissionen aus mobilen Maschinen und Geräten sind den sonstigen Quellen zugeordnet (s. Tabelle 4.8).

Tabelle 4.5: Emissionen des Kleingewerbes in t/a für die Jahre 2005 und 2009

<table>
<thead>
<tr>
<th>Komponente</th>
<th>2005</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feinstaub (PM10)</td>
<td>149</td>
<td>258</td>
</tr>
<tr>
<td>Kohlenmonoxid</td>
<td>168</td>
<td>150</td>
</tr>
<tr>
<td>Stickoxide</td>
<td>160</td>
<td>127</td>
</tr>
<tr>
<td>Organische Gase</td>
<td>5.511</td>
<td>5.500</td>
</tr>
</tbody>
</table>

4.1.4 Kfz-Verkehr

Für die Berechnung der Emissionen des Kfz-Verkehrs sind Daten zur Verkehrsmenge und Fahrleistung, Flottenzusammensetzung (Fahrzeugart und Emissionsstandard), Verkehrssituation (Geschwindigkeit, Stauanteil) und zum Betriebszustand des Motors (Kaltstartanteile) notwendig. Die Berechnungen wurden unter Verwendung von IMMIS durchgeführt.

Die Berechnung der Emissionen erfolgte mit dem in IMMISa enthaltene Emissionsmodul IMMISem unter erstmaliger Verwendung der neuen Version des Handbuchs für Emissionsfaktoren HBEFA 3.138, die im Februar 2010 veröffentlicht wurde. Neben den Motoremissionen berücksichtigt das Modell die Partikelemissionen durch Abrieb und Aufwirbelung39.

Die für die Berechnung der Emissionen verwendeten mittleren täglichen Verkehrsmengen im Hauptverkehrsstraßennetz sind in Abbildung 4.6 dargestellt. Wie zu erwarten, treten die größten Verkehrsmengen mit bis zu fast 170.000 Fahrzeugen pro Tag auf der Stadtautobahn A100 auf.

Der Anteil schwerer Lkw über 3,5 Tonnen, die hohe Emissionen aufweisen, liegt auf den Hauptverkehrsstraßen im Mittel bei 2,9 % mit typischen Werten zwischen 1 und 6 %. Auf den Autobahnen werden im Durchschnitt Lkw-Anteile von etwa 8 % erreicht. Der Spitzenwert von 19 % wurde auf dem nördlichen Berliner Ring der A10 beobachtet.

Um den Einfluss des Verkehrsflusses berücksichtigen zu können, unterscheidet das HBEFA 3.1 die vier Verkehrszustände (Level of Service – LOS) flüssig/frei (LOS1), dicht (LOS2), gesättigt (LOS3) und Stop&Go/Stau (LOS4). Ein freier Verkehrsfluss tritt nur bei relativ niedrigen Verkehrsmengen auf, d.h. überwiegend nachts. Die Emissionsfaktoren liegen hierfür ca. 10 bis 20 % unter denen der Verkehrszustände dicht und gesättigt. Die beiden mittleren Verkehrszustände unterscheiden sich in den meisten Fällen nur wenig in der Höhe der Emissionen. Dagegen weisen Stausituationen bis zu zweifach höhere Emissionen gegenüber gesättigtem Verkehr auf. Die Bestimmung des Verkehrszustandes eines Straßenabschnitts erfolgt auf der Basis von Kapazitätüberlegungen. Dies bedeutet, dass temporäre Störungen, z.B. durch Baustellen, in der Regel nicht berücksichtigt werden können. Im Mittel konnten im Jahr 2009 im Hauptverkehrsstraßennetz 8 % der Fahrleistung der LOS-Klasse 1, 80 % der LOS-Klasse 2, 9 % der LOS-Klasse 3 und 3 % der LOS-Klasse 4, d.h. der Stausituation, zugeordnet werden. Die höchsten Stauanteile lagen zwischen 25 bis 30 % und betrafen etwa 13 Straßenabschnitte.

Tabelle 4.6: Fahrleistungen (Millionen Fahrzeug-km/Jahr), Kraftstoffverbrauch (t/a) und Auspuff- und Abriebemissionen (t/a, außer Benzo[a]pyren in kg/a) nach Fahrzeugarten im Stadtgebiet Berlin im Bezugsjahr 2009 (und Vergleich mit 2002)

<table>
<thead>
<tr>
<th></th>
<th>gesamt</th>
<th>PKW und Kombi</th>
<th>leichte Nutzfahrzeuge</th>
<th>motorisierte Zweiräder</th>
<th>schwere Nutzfahrzeuge</th>
<th>Linienbusse</th>
<th>Reisebusse</th>
<th>Zum Vergleich 2002: gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptverkehrsstraßennetz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrleistung [Mio. Fzgkm]</td>
<td>10.164,0</td>
<td>8.773,3</td>
<td>792,1</td>
<td>101,0</td>
<td>379,1</td>
<td>82,7</td>
<td>35,8</td>
<td>10.598,8</td>
</tr>
<tr>
<td>Kraftstoffverbrauch</td>
<td>690.182,0</td>
<td>595.972,2</td>
<td>53.144,0</td>
<td>6.922,0</td>
<td>25.976,9</td>
<td>5.702,0</td>
<td>2.465,0</td>
<td>85.5105,5</td>
</tr>
<tr>
<td>Stickoxide</td>
<td>6.104,7</td>
<td>3.705,3</td>
<td>254,3</td>
<td>16,4</td>
<td>796,8</td>
<td>953,9</td>
<td>376,0</td>
<td>8.497,4</td>
</tr>
<tr>
<td>Feinstaub (PM$_{10}$) gesamt</td>
<td>741,9</td>
<td>434,9</td>
<td>86,5</td>
<td>2,0</td>
<td>157,9</td>
<td>40,2</td>
<td>20,7</td>
<td>1.193,1</td>
</tr>
<tr>
<td>Auspuffpartikel</td>
<td>180,5</td>
<td>84,9</td>
<td>55,4</td>
<td>0,0</td>
<td>30,6</td>
<td>4,3</td>
<td>5,3</td>
<td>315,7</td>
</tr>
<tr>
<td>Abriebe aus Reifen usw. und Aufwirbelung</td>
<td>561,8</td>
<td>350,0</td>
<td>31,1</td>
<td>2,0</td>
<td>127,4</td>
<td>35,9</td>
<td>15,4</td>
<td>882,7</td>
</tr>
<tr>
<td>Elementarer Kohlenstoff (Auspuff und Reifenabrieb)</td>
<td>100,0</td>
<td>87,1</td>
<td>7,8</td>
<td>0,3</td>
<td>3,7</td>
<td>0,8</td>
<td>0,3</td>
<td>401,4</td>
</tr>
<tr>
<td>Benzo[a]pyren [kg/a]</td>
<td>6,1</td>
<td>5,3</td>
<td>0,5</td>
<td>0,1</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nebenstraßennetz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrleistung [Mio. Fzgkm]</td>
<td>1.890,7</td>
<td>1.632,0</td>
<td>147,3</td>
<td>18,8</td>
<td>70,5</td>
<td>15,4</td>
<td>6,7</td>
<td>2.167,8</td>
</tr>
<tr>
<td>Kraftstoffverbrauch</td>
<td>157.743,5</td>
<td>136.112,4</td>
<td>12.315,1</td>
<td>1.571,4</td>
<td>5.896,7</td>
<td>1.290,0</td>
<td>559,6</td>
<td>205.498,9</td>
</tr>
<tr>
<td>Stickoxide</td>
<td>1.406,1</td>
<td>1.213,3</td>
<td>109,8</td>
<td>14,0</td>
<td>52,6</td>
<td>11,5</td>
<td>5,0</td>
<td>1.957,6</td>
</tr>
<tr>
<td>Feinstaub (PM$_{10}$) gesamt</td>
<td>151,9</td>
<td>100,8</td>
<td>11,6</td>
<td>1,1</td>
<td>29,5</td>
<td>5,9</td>
<td>3,0</td>
<td>243,1</td>
</tr>
<tr>
<td>Auspuffpartikel</td>
<td>44,6</td>
<td>32,8</td>
<td>3,4</td>
<td>0,0</td>
<td>6,5</td>
<td>1,3</td>
<td>0,6</td>
<td>78,3</td>
</tr>
<tr>
<td>Abriebe aus Reifen usw. und Aufwirbelung</td>
<td>107,2</td>
<td>68,0</td>
<td>8,2</td>
<td>1,1</td>
<td>23,0</td>
<td>4,6</td>
<td>2,4</td>
<td>167,3</td>
</tr>
<tr>
<td>Elementarer Kohlenstoff (Auspuff und Reifenabrieb)</td>
<td>23,1</td>
<td>19,9</td>
<td>1,8</td>
<td>0,2</td>
<td>0,9</td>
<td>0,2</td>
<td>0,1</td>
<td>91,6</td>
</tr>
<tr>
<td>Benzo[a]pyren [kg/a]</td>
<td>1,4</td>
<td>1,2</td>
<td>0,1</td>
<td>0</td>
<td>0,1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gesamtes Stadtgebiet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrleistung [Mio. Fzgkm]</td>
<td>12.054,7</td>
<td>10.405,2</td>
<td>939,5</td>
<td>119,8</td>
<td>449,6</td>
<td>98,1</td>
<td>42,5</td>
<td>12.766,6</td>
</tr>
<tr>
<td>Kraftstoffverbrauch</td>
<td>847.925,5</td>
<td>732.084,5</td>
<td>65.459,1</td>
<td>8.493,4</td>
<td>31.873,6</td>
<td>6.992,0</td>
<td>3.024,6</td>
<td>1.060.604,4</td>
</tr>
<tr>
<td>Stickoxide</td>
<td>7.510,8</td>
<td>4.918,6</td>
<td>364,1</td>
<td>30,4</td>
<td>851,3</td>
<td>965,4</td>
<td>381,0</td>
<td>10.455,0</td>
</tr>
<tr>
<td>Feinstaub (PM$_{10}$) gesamt</td>
<td>893,8</td>
<td>535,7</td>
<td>98,1</td>
<td>3,1</td>
<td>187,4</td>
<td>46,1</td>
<td>23,7</td>
<td>1.436,2</td>
</tr>
<tr>
<td>Auspuffpartikel</td>
<td>225,1</td>
<td>117,7</td>
<td>58,8</td>
<td>0,0</td>
<td>37,1</td>
<td>5,6</td>
<td>5,9</td>
<td>394,0</td>
</tr>
<tr>
<td>Abriebe aus Reifen usw. und Aufwirbelung</td>
<td>669,0</td>
<td>418,0</td>
<td>39,3</td>
<td>3,1</td>
<td>150,4</td>
<td>40,5</td>
<td>17,8</td>
<td>1.050,0</td>
</tr>
<tr>
<td>Elementarer Kohlenstoff (Auspuff und Reifenabrieb)</td>
<td>123,1</td>
<td>107,0</td>
<td>9,6</td>
<td>0,5</td>
<td>4,6</td>
<td>1,0</td>
<td>0,4</td>
<td>495,0</td>
</tr>
<tr>
<td>Benzo[a]pyren [kg/a]</td>
<td>7,5</td>
<td>6,5</td>
<td>0,6</td>
<td>0,1</td>
<td>0,3</td>
<td>0,1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Die räumliche Verteilung der Stickoxid- und PM$_{10}$-Emissionen aus dem gesamten Straßenverkehr, d.h. als Summe aus Haupt- und Nebenstraßen, ist in Abbildung 4.7 und Abbildung 4.8 im 1x1 km-Raster dargestellt. Deutlich zu erkennen sind besonders bei den Stickoxiden die Stadtautobahnen als Emissionsschwerpunkte. Es ist aber auch zu sehen, dass der gesamte Innenstadtbereich hohe Emissionen aufweist.

Abbildung 4.7: Stickoxidemissionen des gesamten Straßenverkehrs in Berlin 2009

Emissionen im 1 km x 1 km-Raster
Kfz-Verkehr gesamt 2009
Stickoxide als NO$_x$ in kg pro Jahr

0 bis unter 50 kg/a
50 bis unter 100 kg/a
100 bis unter 1.000 kg/a
1.000 bis unter 5.000 kg/a
5.000 bis unter 10.000 kg/a
10.000 bis unter 20.000 kg/a
20.000 bis unter 50.000 kg/a
Umweltzone

Abbildung 4.8: Feinstaub (PM$_{10}$)-Emissionen des gesamten Straßenverkehrs in Berlin 2009

Emissionen im 1 km x 1 km-Raster
Kfz-Verkehr gesamt 2009
Feinstaub als PM$_{10}$ in kg pro Jahr

0 bis unter 10 kg/a
10 bis unter 50 kg/a
50 bis unter 100 kg/a
100 bis unter 1.000 kg/a
1.000 bis unter 5.000 kg/a
5.000 bis unter 10.000 kg/a
Umweltzone
4.1.5 Sonstiger Verkehr

Die Berechnung der Emissionen des sonstigen Verkehrs basiert auf einer Studie über die Emissionen in der Region Berlin/Brandenburg aus Flugverkehr, Binnenschifffahrt und Eisenbahnhafen für das Jahr 199441 und aktuellen Abschätzungen mit dem UBA-Rechenmodell TREMOD42.

Beim Flugverkehr wurde zwischen 1994 und 2009 eine leichte Zunahme um 5 \% angenommen, denn bei einer etwa 30 \%-igen Steigerung des Verkehrsaufkommens ist der spezifische Energieverbrauch in dieser Zeit um etwa 25 \% gesunken. Für das Jahr 2009 wurden vom Berliner Flugverkehr (Tegel und Schönefeld) ca. 85 Tonnen Feinstaub (PM\textsubscript{10}) und ca. 195 Tonnen Stickoxide pro Jahr im bodennahen Bereich, d.h. beim Rollen auf dem Flugfeld sowie beim Abflug und beim Landen der Flugzeuge, emittiert.

Beim Binnenschifffahrt wird einerseits eine deutliche Abnahme der Verkehrsleistung im Berliner Frachtverkehr um 50 \% seit 199443 beobachtet. Andererseits hat der Fahrgastschiffsverkehr – insbesondere im Berliner Zentrum – deutlich zugenommen. Da die spezifischen Emissionsfaktoren der Binnenschifffahrt für Stickoxide und Partikel seit 1994 nur geringfügig um etwa 5 \%44 gesunken sind, ist mit einer etwa 25 \%-igen Abnahme der Emissionen gegenüber dem Jahr 1994 zu rechnen. Für die Binnenschifffahrt lagen grobe Angaben zum jährlichen Kraftstoffverbrauch (ca. 4.000 t/a) vor, die ebenfalls bei der Emissionsbestimmung berücksichtigt wurden.

Die Emissionen aus den Verkehrsträgern des sonstigen Verkehrs sind in Tabelle 4.7 zusammengefasst.

Tabelle 4.7: Emissionen des sonstigen Verkehrs in Berlin im Jahr 2009

<table>
<thead>
<tr>
<th>Verkehrsträger</th>
<th>Feinstaub (PM\textsubscript{10}) in t/a</th>
<th>NO\textsubscript{x} in t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schienenverkehr: motorbedingte Emissionen</td>
<td>29</td>
<td>250</td>
</tr>
<tr>
<td>Schiffsverkehr</td>
<td>5</td>
<td>196</td>
</tr>
<tr>
<td>Flugverkehr (bodennah)</td>
<td>85</td>
<td>195</td>
</tr>
<tr>
<td>Summe</td>
<td>119</td>
<td>641</td>
</tr>
</tbody>
</table>

4.1.6 Sonstige Quellen
Während in der Berliner Umgebung die Emissionen im Wesentlichen aus Bilanzen gehandhabter oder produzierter Stoffe ermittelt wurden (EMEP-Datenbasis), wurden die Berliner Emissionen aus Abschätzungen einzelner Quellen ermittelt. Beim Feinstaub gibt es viele diffuse Quellen, die nicht einzeln erfassbar sind. Sie können nur durch Plausibilitätsbetrachtungen aus Stoffbilanzen abgeschätzt werden.

Seit September 2004 liegt das Ergebnis eines UBA-Forschungsvorhabens zu den Emissionen mobiler Geräte und Maschinen vor, das auf derartigen Stoffbilanzen basiert45. In

41 Motz, G. und Hartmann, A.: Aktionsprogramm und Maßnahmenplan Ozone – Inputdatenbasis 1994, 1997
43 Wasser- und Schifffahrtsverwaltung des Bundes: Binnenschifffahrt in Berlin weiter auf dynamischem Wachstumskurs. Pressemitteilung Berlin 12.09.2008

Tabelle 4.8: Abgasemissionen aus mobilen Maschinen in Berlin für 2009

<table>
<thead>
<tr>
<th></th>
<th>Abgasemissionen in t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feinstaub (PM<sub>2.5</sub>)</td>
<td>140</td>
</tr>
<tr>
<td>Kohlenmonoxid</td>
<td>7.100</td>
</tr>
<tr>
<td>Stickoxide</td>
<td>1.200</td>
</tr>
<tr>
<td>Organische Gase</td>
<td>350</td>
</tr>
</tbody>
</table>

Diese Zahlen sind naturgemäß mit einer erhöhten Unsicherheit behaftet.

Zum Einen unterliegt der hier verwendete bundesweite Ausgangswert ebenfalls Schwankungen, je nachdem welcher Stand an Information zu dem in Deutschland eingesetzten Maschinenpark, zu den Nutzungsprofilen verschiedener Maschinentypen, zur Nennleistung, zu Last- und Emissionsfaktoren in Betracht gezogen wird. So ergeben sich auf Grundlage einer erneuerten, 2009 im Auftrag des Umweltbundesamtes durchgeführten Auswertung⁴⁶ etwas niedrigere Zahlen, beispielsweise von 120 t/a für die Partikelemissionen in Berlin. Inzwischen sind jedoch insbesondere für die Bauwirtschaft verschiedene Verbesserungen in der Datengrundlage erfolgt⁴⁷, nach denen für Berlin im Jahr 2009 mit einer höheren Partikelemission von 170 t/a zu rechnen ist, wenn man die bundesweiten Emissionen mit dem Einwohneranteil Berlins gewichtet.

Zum Anderen können für die Umrechnung der bundesweiten Daten auf die Berliner Situation statt der Einwohnerzahl grundsätzlich auch andere Kenngrößen verwendet werden, wie z.B. der Umsatz der Berliner Baubranche⁴⁸ oder die im Tiefbau geleisteten Arbeitsstunden, die vom statistischen Bundesamt als eine der wenigen baurelevanten statistischen Kenngrößen erfassten werden⁴⁹. Bei Anwendung dieser Umrechnungsfaktoren ergaben sich etwa 120 t/a bzw. 90 t/a an Partikelemissionen, wenn man die neuesten Emissionsberechnungen der laufenden UBA-Untersuchung zugrunde legt. Insgesamt besteht also eine beträchtliche Spannbreite bei der Abschätzung der Auspuffpartikelemissionen der Berliner Baumaschinen, bei der die in Tabelle 4.8 angegebenen Zahlen etwa in der Mitte liegen.

Eine Studie⁵⁰ zum Thema Feinstaub aus Kleinfuehren kommt zu dem Ergebnis, dass in Deutschland im Jahr 2000 bei Haushalten und Kleinverbrauchern fünfmal soviel Energie durch Holzbrennstoffe erzeugt wird als durch Kohlen. Eine Übertragung dieses Ergebnisses auf die Berliner Verhältnisse ergibt, dass hier um ein Vielfaches mehr Holz, beispielsweise zur Zusatzheizung in Kaminen, verbrannt wird, als über den Brennstoffhandel verkauft wird. Bei dieser Verbrennung entstehen insbesondere zusätzliche Feinstaubemissionen von ca. 360 t pro Jahr.

⁴⁷ H. Helms, IFEU – Institut (2012), persönliche Mitteilung

⁴⁸ 2.9 % Anteil Berlins nach Angaben der Fachgemeinschaft Bau und des Bauindustrieverbandes Berlin-Brandenburg

⁴⁹ Anteil Berlins 2.3 % nach Angaben des IFEU – Instituts

Tabelle 4.9: Emissionen sonstiger Quellen in Berlin im Jahr 2009

<table>
<thead>
<tr>
<th>Emissionsebene und Quelle</th>
<th>Feinstaub (PM$_{10}$) in t/a</th>
<th>NO$_x$ in t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abgas mobiler Maschinen</td>
<td>140</td>
<td>1.200</td>
</tr>
<tr>
<td>Abrieb und Aufwirbelung: mobile Geräte, sonstiger Verkehr</td>
<td>280</td>
<td>0</td>
</tr>
<tr>
<td>Holzverbrennung als Zusatzheizung in privaten Haushalten</td>
<td>360</td>
<td>430</td>
</tr>
<tr>
<td>Sonstige verbrennungsbedingte Emissionen</td>
<td>56</td>
<td>70</td>
</tr>
<tr>
<td>Baustellentätigkeit mit Transport</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Aufwirbelung durch starken Wind</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Pflanzen (Pollen, organische Partikel)</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Unbekannte Quellen</td>
<td>170</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>1.606</td>
<td>1.700</td>
</tr>
</tbody>
</table>

Die natürliche Aufwirbelung durch starken Wind erzeugt im Jahresmittel in Berlin ca. 500 t Staub, davon ca. 200 t Feinstaub (PM$_{10}$). Weitere 100 t Feinstaub werden in Berlin durch Pflanzen abgegeben, teilweise direkt als Pollen und teilweise als organische Gase, die durch Mitwirkung von Ozon in organische Partikel umgewandelt werden.

4.1.7 Gesamtmenge und Verteilung der Emissionen in Berlin

Die räumliche Verteilung der Stickoxidemissionen aus allen Quellen Berlins ist in Abbildung 4.11 dargestellt. Deutlich zu erkennen sind die Kraftwerkstandorte sowie die Gebiete mit besonders stark befahrenen Hauptverkehrsstraßen oder Autobahnen.

Die größte Einzelquelle ist weiterhin der Abrieb und die Aufwirbelung von Partikeln im Straßenverkehr mit 21 %, auch wenn diese Emissionen im Emissionskataster 2009 aufgrund neuer Emissionsfaktoren um fast 40 % niedriger geschätzt wurden. Im Gegensatz zu Dieselrauch handelt es sich dabei meist um größere Partikel mit Durchmessern über 2,5 µm, so dass diese Partikel weniger tief eingeatmet werden können. Aus Kfz-Abgasen stammen ca. 7 % des Feinstaubs, so dass der Straßenverkehr insgesamt einen Anteil von etwa 28 % an den Feinstaubemissionen erreicht.

Die Angaben zu den Partikelemissionen sind mit sehr viel größeren Unsicherheiten behaftet als die Emissionsangaben zu Stickoxiden. Viele Prozesse der Partikelemissionen, besonders durch Abrieb und Aufwirbelung, werden derzeit erst unvollständig verstanden, andere Quellgruppen können wie Baustellen aufgrund ihrer jeweils nur zeitlich befristeten und sehr vielfältigen Aktivität nur grob geschätzt werden. Der Vergleich von Immissionsmodellierung mit realen Messwerten zeigt dabei, dass die Gesamtmenge der Partikelemissionen eher unterschätzt wird, da die Modelle, die auf den in den Katastern erfassten Emissionen basieren, im Mittel zu niedrige Außenluftkonzentrationen berechnen.

Im Südosten des Berliner Stadtgebietes sind in Abbildung 4.11 und Abbildung 4.12 die NOx- und PM10-Emissionen des Flughafens Schönefelds ersichtlich. Deutlich wird, dass die Emissionsdichte des Flugverkehrs relativ gering ist.

Tabelle 4.10: Emissionen in Berlin nach Emittentengruppen in Tonnen pro Jahr (t/a)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>genehmigungsbedürftige Anlagen</td>
<td>60.470</td>
<td>10.870</td>
<td>5.683</td>
<td>4.433</td>
<td>2.899</td>
<td>2.319</td>
<td>2.310</td>
<td>2.300</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>8.526</td>
<td>4.890</td>
<td>2.500</td>
<td>2.400</td>
<td>1.513</td>
<td>1.294</td>
<td>1.150</td>
<td>663</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>75</td>
<td>70</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>45</td>
<td>43</td>
<td>41</td>
</tr>
<tr>
<td>Verkehr (nur Kfz)</td>
<td>1.440</td>
<td>1.440</td>
<td>400</td>
<td>55</td>
<td>16</td>
<td>13</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td>140</td>
<td>140</td>
<td>75</td>
<td>75</td>
<td>68</td>
<td>54</td>
<td>51</td>
<td>45</td>
</tr>
<tr>
<td>sonstige Quellen</td>
<td>150</td>
<td>220</td>
<td>150</td>
<td>135</td>
<td>120</td>
<td>113</td>
<td>102</td>
<td>98</td>
</tr>
<tr>
<td>Stickoxide</td>
<td>71.421</td>
<td>43.317</td>
<td>27.681</td>
<td>23.499</td>
<td>21.229</td>
<td>19.380</td>
<td>17.329</td>
<td>13.636</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>2.704</td>
<td>3.120</td>
<td>2.860</td>
<td>2.860</td>
<td>2.945</td>
<td>2.807</td>
<td>2.739</td>
<td>1.595</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>1.200</td>
<td>700</td>
<td>190</td>
<td>185</td>
<td>160</td>
<td>127</td>
<td>124</td>
<td>120</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td>1.400</td>
<td>1.300</td>
<td>1.000</td>
<td>900</td>
<td>652</td>
<td>641</td>
<td>635</td>
<td>630</td>
</tr>
<tr>
<td>sonstige Quellen</td>
<td>2.950</td>
<td>3.000</td>
<td>2.900</td>
<td>2.600</td>
<td>1.900</td>
<td>1.700</td>
<td>1.600</td>
<td>1.500</td>
</tr>
<tr>
<td>Kohlenmonoxid</td>
<td>301.705</td>
<td>210.948</td>
<td>105.128</td>
<td>78.933</td>
<td>72.701</td>
<td>60.935</td>
<td>51.897</td>
<td>40.481</td>
</tr>
<tr>
<td>genehmigungsbedürftige Anlagen</td>
<td>32.443</td>
<td>3.888</td>
<td>2.028</td>
<td>1.581</td>
<td>1.521</td>
<td>1.637</td>
<td>1.630</td>
<td>1.620</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>68.712</td>
<td>41.560</td>
<td>8.000</td>
<td>8.000</td>
<td>5.900</td>
<td>5.673</td>
<td>5.100</td>
<td>3.100</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>1.500</td>
<td>800</td>
<td>200</td>
<td>193</td>
<td>168</td>
<td>150</td>
<td>140</td>
<td>135</td>
</tr>
<tr>
<td>Verkehr (nur Kfz)</td>
<td>182.050</td>
<td>144.200</td>
<td>76.500</td>
<td>51.259</td>
<td>47.767</td>
<td>36.025</td>
<td>28.607</td>
<td>19.426</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td>4.000</td>
<td>3.500</td>
<td>3.100</td>
<td>3.100</td>
<td>2.945</td>
<td>2.950</td>
<td>2.920</td>
<td>2.900</td>
</tr>
<tr>
<td>genehmigungsbedürftige Anlagen</td>
<td>9.563</td>
<td>3.161</td>
<td>960</td>
<td>650</td>
<td>384</td>
<td>153</td>
<td>150</td>
<td>145</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>2.693</td>
<td>1.148</td>
<td>131</td>
<td>132</td>
<td>96</td>
<td>95</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>250</td>
<td>220</td>
<td>160</td>
<td>153</td>
<td>149</td>
<td>258</td>
<td>250</td>
<td>240</td>
</tr>
<tr>
<td>Verkehr (nur Kfz, Auspuff)</td>
<td>1.736</td>
<td>1.135</td>
<td>667</td>
<td>394</td>
<td>355</td>
<td>225</td>
<td>124</td>
<td>60</td>
</tr>
<tr>
<td>Abrieb und Aufwirbelung durch Kfz-Verkehr</td>
<td>1.200</td>
<td>1.150</td>
<td>997</td>
<td>1.050</td>
<td>1.099</td>
<td>669</td>
<td>692</td>
<td>631</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td>238</td>
<td>190</td>
<td>124</td>
<td>130</td>
<td>133</td>
<td>119</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td>sonstige Quellen</td>
<td>1.900</td>
<td>1.800</td>
<td>1.750</td>
<td>1.700</td>
<td>1.648</td>
<td>1.606</td>
<td>1.568</td>
<td>1.500</td>
</tr>
<tr>
<td>Feinstaub (PM_{2,5})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.364</td>
<td>1.828</td>
</tr>
<tr>
<td>genehmigungsbedürftige Anlagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.707</td>
<td>1.563</td>
</tr>
<tr>
<td>Hausbrand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td>84</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td>81</td>
</tr>
<tr>
<td>Verkehr (nur Kfz, Auspuff)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>119</td>
<td>197</td>
</tr>
<tr>
<td>Abrieb und Aufwirbelung durch Kfz-Verkehr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>337</td>
<td>225</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
<td>69</td>
</tr>
<tr>
<td>sonstige Quellen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>824</td>
<td>803</td>
</tr>
<tr>
<td>organische Gase</td>
<td>102.351</td>
<td>73.703</td>
<td>32.914</td>
<td>26.410</td>
<td>24.947</td>
<td>22.767</td>
<td>19.516</td>
<td>17.251</td>
</tr>
<tr>
<td>genehmigungsbedürftige Anlagen</td>
<td>11.801</td>
<td>3.473</td>
<td>2.554</td>
<td>1.966</td>
<td>1.596</td>
<td>824</td>
<td>840</td>
<td>860</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>5.250</td>
<td>2.340</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>478</td>
<td>450</td>
<td>400</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>15.500</td>
<td>15.000</td>
<td>6.500</td>
<td>6.484</td>
<td>5.511</td>
<td>5.500</td>
<td>5.300</td>
<td>5.200</td>
</tr>
<tr>
<td>Verkehr (nur Kfz)</td>
<td>49.800</td>
<td>33.890</td>
<td>12.500</td>
<td>8.000</td>
<td>7.300</td>
<td>6.915</td>
<td>5.326</td>
<td>3.491</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td>3.000</td>
<td>2.000</td>
<td>1.710</td>
<td>1.710</td>
<td>1.590</td>
<td>1.200</td>
<td>1.100</td>
<td>1.000</td>
</tr>
<tr>
<td>sonstige Quellen und Haushalte</td>
<td>17.000</td>
<td>17.000</td>
<td>9.100</td>
<td>7.700</td>
<td>7.400</td>
<td>6.850</td>
<td>6.500</td>
<td>6.300</td>
</tr>
</tbody>
</table>
Abbildung 4.11: Räumliche Verteilung der Stickoxidedemissionen aus allen Quellgruppen in Berlin 2009

Emissionen im 1 km x 1 km-Raster
alle Quellgruppen 2009
Stickoxide als NO\textsubscript{x} in kg pro Jahr

- 0 bis unter 10 kg/a
- 10 bis unter 100 kg/a
- 100 bis unter 1.000 kg/a
- 1.000 bis unter 10.000 kg/a
- 10.000 bis unter 50.000 kg/a
- 50.000 bis unter 100.000 kg/a
- 100.000 bis unter 1.000.000 kg/a
- über 1.000.000 kg/a

Umweltzone

Abbildung 4.12: Räumliche Verteilung der Feinstaub (PM\textsubscript{10})-Emissionen aller Quellgruppen in Berlin 2009

Emissionen im 1 km x 1 km-Raster
alle Quellgruppen 2009
Feinstaub als PM\textsubscript{10} in kg pro Jahr

- 0 bis unter 5 kg/a
- 5 bis unter 10 kg/a
- 10 bis unter 100 kg/a
- 100 bis unter 1.000 kg/a
- 1.000 bis unter 5.000 kg/a
- 5.000 bis unter 10.000 kg/a
- 10.000 bis unter 20.000 kg/a
- über 20.000 kg/a

Umweltzone
4.2 Emissionen in der Umgebung Berlins

Daten zu den Emissionen außerhalb Berlins werden benötigt, um die Vorbelastung der nach Berlin einströmenden Luft, d.h. die Belastung im großräumigen Hintergrund, berechnen zu können. Alle in den RCG-Berechnungen verwendeten Emissionen stammen aus der PAREST-Emissionsdatenbasis.

51 Umweltbundesamt: Zentrales System Emissionen (ZSE), Emissionsdatenbank des Umweltbundesamtes mit dem Stand vom 08.06.2007
5 Ursachenanalyse

Ziel der Ursachenanalyse ist es, die Herkunft der Stickoxid- und Feinstaubbelastung und die Anteile verschiedener Quellgruppen zu quantifizieren. Denn nur so ist eine verursachergerechte Maßnahmenplanung zur Reduzierung hoher Belastungen möglich.

5.1 Meteorologische Randbedingungen in den Jahren 2005-2010

![Abbildung 5.2: Vergleich meteorologischer Parameter für die Jahre 2005-2010, die einen Einfluss auf Emission, Transport und Verdünnung von Luftschadstoffen haben (für Windrichtung an windschwachen Tagen liegt für 2005 keine Auswertung vor)](image-url)

Besonders das Jahr 2010 wies in mehrfacher Hinsicht meteorologische Extremwerte auf, die zu erhöhten Schadstoffemissionen, schlechterer Ausbreitung der Abgase und höheren Belastungen durch grenzüberschreitenden Transport von Feinstaub führten.

[55 Quelle: Berliner Wetterkarte e.V. (Hrsg.): Beilage zur Berliner Wetterkarte – Klimatologische Mittelwerte von Berlin-Dahlem für die Jahre 2005 bis 2010]

Abbildung 5.3: Prozentuale Häufigkeit der Windrichtungen (alle Windgeschwindigkeiten) in den Jahren 2005 bis 2010 an der Messstelle des Meteorologischen Instituts der FU-Berlin
5.2 Herkunft der Stickstoffdioxidbelastung

Zur Ermittlung der Quellanteile für Stickstoffdioxid wurden die in Kapitel 3.1 beschriebenen Ausbreitungsmodelle verwendet. Da in Berlin nur der NO₂-Grenzwert für das Jahresmittel, nicht aber der Kurzzeitgrenzwert überschritten wird, kann auf eine Betrachtung von Konzentrationsspitzenwerten verzichtet werden.

5.2.1 Bedeutung von Direktemissionen und Photochemie

Stickoxide entstehen zum größten Teil bei Verbrennungsprozessen wie in Kraftwerken oder in Verbrennungsmotoren der Kraftfahrzeuge als unerwünschtes Nebenprodukt durch die Oxidation des in der Verbrennungsluft enthaltenen Luft-Stickstoffs. Dabei wird zunächst Stickstoffmonoxid (NO) gebildet, das in der Atmosphäre zu Stickstoffdioxid (NO₂) oxidiert wird, vorwiegend durch Reaktionen mit Ozon oder Kohlenwasserstoffen. NO₂ selbst ist auch ein chemisch aktiver Stoff, der in der Atmosphäre einer Reihe von Reaktionen mit unterschiedlichen Stoffen unterliegt, bei denen u.a. Ozon gebildet wird. Dabei stellt sich in Abhängigkeit von der Sonneneinstrahlung ein sogenanntes photochemisches Gleichgewicht zwischen NO, NO₂ und Ozon ein.

In Diesel-Kraftfahrzeugen wird durch den Einsatz von Oxidationskatalysatoren inzwischen ein zunehmender Teil des NO bereits im Abgas direkt zu NO₂ umgewandelt und emittiert. Dies wird als Direktemission von NO₂ oder direktes NO₂ bezeichnet, während das in der Atmosphäre aus NO gebildet NO₂ im Folgenden photochemisches NO₂ genannt wird. Der Oxidationskatalysator wurde bei Pkw ab der Euro-Norm 2 eingeführt, um durch die Oxidation von Kohlenwasserstoffen zu CO₂ die Masse der Dieselrußpartikel zu reduzieren. Mit Einführung von Partikelfiltern wird das im Oxidationskatalysator gebildete NO₂ auch für die Regeneration des Filters genutzt, da es als Sauerstofflieferant die Verbrennung des abgelagerten Ruß unterstützt.

5.2.2 Verursacheranteile nach Quellgruppen

Die NO₂-Konzentration in der Straßenschlucht setzt sich zusammen aus der NO₂-Vorbelastung, dem Anteil des städtischen Hintergrundes mit allen Berliner Quellen außer dem Emissionsanteil des betrachteten Straßenabschnitts und dem in den Straßenabschnitt durch den Kfz-Verkehr direkt emittierten NO₂ sowie dem durch chemische Umwandlungen aus dem lokal emittierten NO produzierten NO₂.

Die Verursacheranteile wurden mit dem Ausbreitungsmodell IMMIS für alle Standorte berechnet, an denen NO₂ mit kontinuierlichen Messgeräten oder Passivsammlern gemessen wird.

Die Berliner Quellen wie Industrie, Kraftwerke und Hausheizung spielen nur eine untergeordnete Rolle. Ihr Anteil von zusammen 10 % ist ähnlich gering wie der Anteil der von außerhalb in das Stadtgebiet importierten NO₂-Belastung mit 12 %.

Eine Reduktion der NO₂-Konzentration kann und muss daher vorwiegend mit Maßnahmen im Kfz-Verkehr erreicht werden.

Aus dem Flugverkehr resultieren für das Berliner Stadtgebiet nur geringe Beiträge zur Luftbelastung. Da der größte Teil der Emissionen des Flugverkehrs nicht direkt am Boden (wie z.B. die Abgase von Kraftfahrzeugen), sondern in größerer Höhe von mehreren hundert bis mehreren tausend Metern in die Atmosphäre gelangt, ist die Verdünnung bis zum Boden sehr hoch. Der Beitrag des Flugverkehrs zur NO₂-Belastungen an Orten, an denen Grenzwerte für die Luftqualität überschritten werden, liegt unter 1 %.

Abbildung 5.4: Mittlere berechnete Quellanteile an der Stickstoffdioxidbelastung an 27 Hauptverkehrsstraßen in Berlin im Jahr 2009

Die Ergebnisse für alle untersuchten Straßenabschnitte zeigt Abbildung 5.5.
Abbildung 5.5: Berechnete Verursacheranteile der NO₂-Belastung an 27 ausgewählten Straßenabschnitten für das Jahr 2009

Abbildung 5.5 zeigt die berechneten Verursacheranteile der NO₂-Belastung an 27 ausgewählten Straßenabschnitten für das Jahr 2009. Die Verursacheranteile werden für den Regionalen Hintergrund, die Sonstigen Quellen, die Industrie, das HuK, den Sonstigen Verkehr, den Kfz-Verkehr, die Zusatzbelastung des Kfz-Verkehrs / Photochemie und die Zusatzbelastung des Kfz-Verkehrs / NO₂ direkt emittiert dargestellt.

Die Balkendiagramme zeigen pro Straßenabschnitt die anteiligen Verursacher der NO₂-Belastung. Die Balken sind in verschiedene Farben geteilt, die jeweilige Farbe steht für eine bestimmte Quelle der NO₂-Belastung. Die Balken sind mit dem Prozentanteil der NO₂-Belastung an der jeweiligen Straße gekennzeichnet.

Zum Beispiel ist für den Tempelhofer Damm 148 der Hauptanteil der NO₂-Belastung durch den Kfz-Verkehr verursacht, während für den Spandauer Damm 54 die Zusatzbelastung des Kfz-Verkehrs / Photochemie eine wichtige Rolle spielt.

Die Balken sind auf einer Skala von 0 bis 100% angeordnet, die auf der linken Seite der Diagramme zu finden sind. Die Streifen auf der Balkendiagramme entsprechen den einzelnen Verursacheranteilen.
5.3 Herkunft der Feinstaub (PM$_{10}$)-Belastung

Bei der Beurteilung der PM$_{10}$-Belastung in Berlin wurden zunächst die Beiträge der Quellgruppen zum Jahresmittelwert auf der Grundlage von Modellrechnungen bestimmt. Die Ergebnisse sind in Kapitel 5.3.1 dargestellt. Zusätzlich wurde die PM$_{10}$-Herkunft durch Auswertung verschiedener Messungen und meteorologischer Daten untersucht. Da in Berlin bei PM$_{10}$ nicht der Luftqualitätsgrenzwert für das Jahresmittel, sondern der Grenzwert für den Kurzzeitwert (mehr als 35 Tagesmittelwerte über 50 µg/m3) überschritten wird, wurden dabei Episoden hoher Tagesmittelwerte genauer betrachtet.

Die grundlegende Unterscheidung zwischen lokalen, städtischen und regionalen bzw. überregionalen Beiträgen der in Berlin gemessenen PM$_{10}$-Konzentrationen wird hierbei gemäß Abbildung 5.1 berücksichtigt.

5.3.1 Mittlere Verursacheranteile nach Quellgruppen aus Modellierungen

Die sich aus dem Mittel über alle 27 Straßenabschnitte ergebenden Anteile der Quellgruppen an der PM$_{10}$-Belastung an Hauptverkehrsstraßen sind in Abbildung 5.6 dargestellt.

Abbildung 5.6: Berechnete Quellanteile an der PM$_{10}$-Belastung an Hauptverkehrsstraßen in Berlin aus dem Mittel über 27 Straßenabschnitte im Jahr 2009

lokaler Verkehr

Kfz Auspuff | 4,1 %
Kfz Abrieb / Aufwirbelung | 14,9 %
Kfz-Verkehr städtischer Hintergrund | 7,5 %
sonstiger Verkehr | 0,3 %
Heizung / Kleingewerbe | 1,3 %
Industrie | 0,3 %
sonstige Quellen | 7,4 %
urbaner Hintergrund

regionaler Hintergrund | 64,4 %

Bereits etwa 64% der gesamten Feinstaubbelastung an Hauptverkehrsstraßen stammen aus der regionalen und überregionalen Hintergrundbelastung und damit aus Quellen außerhalb Berlins. Dieser Beitrag lässt sich nicht durch Maßnahmen des Luftreinhalteplans Berlin beeinflussen. Weitere Untersuchungen zur Herkunft der Vorbelastung und zur Frage des Einflusses grenzüberschreitenden Ferntransports folgen in Kapitel 5.3.2.

Der Beitrag der Quellgruppe Industrie ist mit einem Anteil von 0,3% an Hauptverkehrsstraßen sehr gering. Im direkten Einwirkungsbereich von Anlagen können höhere Beiträge auftreten, die jedoch lokal begrenzt sind. Etwas größer ist der Beitrag der Gebäudeheizung und Kleinverbraucher mit einem mittleren Anteil von 1%. Für PM\textsubscript{10} finden sich auch relevante Beiträge sonstiger Emittenten mit einem mittleren Beitrag von gut 7%.

Der Flugverkehr trägt maximal 1% zur Feinstaubbelastung in Straßenzügen bei, die erhöhte Schadstoffwerte aufweisen. Messungen an europäischen Großflughäfen wie London-Heathrow oder Frankfurt am Main zeigen ebenfalls, dass der Einfluss des Flugverkehrs in der Umgebung sehr gering ist.

Luftreinhalteplan 2011 bis 2017 für Berlin | 5 Ursachenanalyse

Abbildung 5.7: PM$_{10}$-Verursacheranteile für 27 ausgewählte Straßenabschnitte in Berlin im Jahr 2009 (aus Modellrechnung)

<table>
<thead>
<tr>
<th>Straße/Quelle</th>
<th>PM$_{10}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt Friedrichsfelde 8a</td>
<td>31</td>
</tr>
<tr>
<td>Alt Moabit 63</td>
<td>34</td>
</tr>
<tr>
<td>Badstr.</td>
<td>31</td>
</tr>
<tr>
<td>Berliner Allee 118</td>
<td>32</td>
</tr>
<tr>
<td>Beussestr. 66</td>
<td>33</td>
</tr>
<tr>
<td>Buschkrugallee</td>
<td>31</td>
</tr>
<tr>
<td>Eichborndamm 23 - 25</td>
<td>28</td>
</tr>
<tr>
<td>Frankfurter Allee 86b</td>
<td>31</td>
</tr>
<tr>
<td>Friedrichstr.</td>
<td>29</td>
</tr>
<tr>
<td>Glienicker Weg 115 - 95</td>
<td>29</td>
</tr>
<tr>
<td>Grünauer Str. 4</td>
<td>28</td>
</tr>
<tr>
<td>Hauptstr. 30</td>
<td>33</td>
</tr>
<tr>
<td>Hermannplatz</td>
<td>30</td>
</tr>
<tr>
<td>Hermannstr. 120</td>
<td>33</td>
</tr>
<tr>
<td>Kantstr. 117</td>
<td>31</td>
</tr>
<tr>
<td>Karl-Marx-Str. 77</td>
<td>30</td>
</tr>
<tr>
<td>Landsberger Allee 6 - 8</td>
<td>30</td>
</tr>
<tr>
<td>Leipziger Str. 32</td>
<td>46</td>
</tr>
<tr>
<td>Potsdamer Str. 102</td>
<td>33</td>
</tr>
<tr>
<td>Schildhornstr. 76</td>
<td>34</td>
</tr>
<tr>
<td>Schloßstr. 29</td>
<td>30</td>
</tr>
<tr>
<td>Silbersteinstr. 1</td>
<td>31</td>
</tr>
<tr>
<td>Sonnenallee 68</td>
<td>32</td>
</tr>
<tr>
<td>Spandau</td>
<td>30</td>
</tr>
<tr>
<td>Spandauer Damm 54</td>
<td>32</td>
</tr>
<tr>
<td>Spreestr. 2</td>
<td>28</td>
</tr>
<tr>
<td>Tempelhofer Damm 148</td>
<td>31</td>
</tr>
</tbody>
</table>

PM$_{10}$-Konzentration in µg/m3
5.3.2 Ursachen der Überschreitung des PM$_{10}$-Kurzzeitgrenzwertes

Für PM$_{10}$-Feinstaub wird in Berlin in einzelnen Jahren der Luftqualitätsgrenzwert für den Kurzzeitwert überschritten, d.h. es werden an mehr als 35 Tagen Tagesmittelwerte über 50 µg/m3 gemessen. Der Grenzwert für das Jahresmittel von 40 µg/m3 konnte dagegen in den vergangenen Jahren eingehalten werden. Im Folgenden werden daher die vorliegenden Messdaten hinsichtlich der Ursachen hoher Tagesmittelwerte untersucht. Wie schon die Modellrechnungen gezeigt haben, stammen bereits im Jahresmittel etwa 65 % des Feinstaubs aus Quellen außerhalb Berlins. Die Analyse der Herkunft dieser hohen Vorbelastung der Luft und ihrer Bedeutung für hohe Tagesmittelwerte steht daher im Zentrum der folgenden Auswertungen.

Daneben treten aber auch Überschreitungen des Tagesmittelwertes durch Einfluss lokaler Quellen auf, insbesondere bei schlechten, meteorologisch bedingten Ausbreitungsbedingungen für lokale Emissionen oder durch temporäre hohe lokale Zusatzemissionen, z.B. durch Baustellen.

5.3.2.1 Einfluss der Vorbelastung auf die Überschreitung des Tagesmittelwertes

Um die Bedeutung der Vorbelastung an Tagen mit Feinstaubkonzentrationen > 50 µg/m3 aufzuziehen, wurde für jeden Tag die Differenz zwischen der PM$_{10}$-Konzentration an der verkehrsreichen Station und der Eintragsstation, die nach Windrichtung ausgewählt wurde, gebildet. Dabei wird angenommen, dass die Eintragsstation die großräumige Luftbelastung und damit auch den Ferntransport repräsentiert.

In Abbildung 5.8 ist der so berechnete prozentuale Eigenanteil Berlins über die gemessene Konzentration aufgetragen.

Es zeigt sich, dass mit steigender PM$_{10}$-Konzentration an der Verkehrsstation der Eigenanteil Berlins sinkt und somit die Bedeutung der Vorbelastung steigt. An Tagen mit Mittelwerten über 50 µg/m3 treten Eigenanteile von mehr als 35 % immer seltener auf. Ausnahmen sind die Silvestertage, an denen der Eigenanteil durch das Feuerwerk sehr hoch ist. Das Minderungspotenzial durch Senkung des Eigenanteils der Berliner Quellen ist also gerade an Tagen mit hohen Belastungen kleiner als im Mittel. Insofern sind smogalarmartige Maßnahmen, wie sie die sogenannten Pläne für kurzfristige Maßnahmen vorsehen, nicht geeignet, Überschreitungstage zu vermeiden.

Eigenanteil (schwarze Regressionskurve) lag bei Tageswerten von 50 µg/m² für den Zeitraum 2002-2004 bei 42 %. Für den Zeitraum 2005-2010 ist er auf etwa 35 % gesunken.

Für die Messstation Frankfurter Allee wurden für die Jahre 2006 bis 2010 für alle Überschreitungstage die Beiträge nach Quellregionen bestimmt, d.h. der Beitrag des lokalen Verkehrs, des städtischen Hintergrunds und des regionalen Hintergrund als Maß für den Eintrag von außen. Wie Abbildung 5.9 zeigt, liegt in Jahren mit sehr vielen Überschreitungstagen bereits die mittlere Eintragskonzentration bei 50 µg/m², d.h. der Tagesgrenzwert ist oft schon an der Stadtgrenze erreicht. Je nach Emissionsintensität der städtischen Quellen und der örtlichen Ausbreitungsbedingungen erhöht sich die PM₁₀-Konzentration in der Stadt um weitere 22 bis 29 µg/m². Der blau gekennzeichnete Stadtbeitrag wird dabei erheblich durch den Einfluss des Hausbrands geprägt und ist in kalten Jahren meist etwas höher, insbesondere dann, wenn auch die Ausbreitungsbedingungen schlecht sind. Während der Stadtbeitrag in 2010 aufgrund des kalten Winters höher als 2009 war, erreichte der lokale Zusatzbeitrag des Verkehrs im Jahr 2010 den niedrigsten Beitrag überhaupt. Innwieweit dazu die Stufe 2 der Umweltzone mit ihrer etwa 50-prozentigen Reduktion der Dieselrußpartikel beigetragen hat, wird die Auswertung der kommenden Jahre zeigen.

Abbildung 5.9: Mittlere Beiträge der Quellregionen in µg/m³ an der Messstation Frankfurter Allee an Tagen mit Überschreitungen des Tagesgrenzwertes von 50 µg/m³ für die Jahre 2006 bis 2010

Quellregion:
- Regionaler Hintergrund
- Urbaner Hintergrund
- Lokaler Verkehr

5.3.2.2 Herkunft der regionalen und überregionalen Hintergrundbelastung
Feinstaub (PM₁₀) hat eine Verweildauer in der Atmosphäre, die einen Transport in der Luft über hunderte Kilometer erlaubt. Besonders Feinstaubpartikel mit aerodynamischen Durchmessern zwischen 0,1 µm und 2,5 µm können sich über Wochen in der Luft aufhalten. Großräumige Luftmassenbewegungen sorgen dann dafür, dass Luftschadstoffe von stark belasteten Gebieten über weite Strecken transportiert werden. Gerade in diesem Partikelgrößenbereich finden sich die gesundheitsschädlichen Rußpartikel, aber auch die aus gasförmigen Vorläuferstoffen gebildeten, schwefelhaltigen Teilchen (Sulfate).

Bei Anströmung der Frankfurter Allee aus nördlichen bis nordöstlichen Richtungen ist der Verkehrsbeitrag am niedrigsten, weil dabei die Messstation durch Ausbildung einer Walzenströmung weniger stark der Abgasfahne des Verkehrs ausgesetzt ist und außerdem die Windgeschwindigkeit oft höher und damit auch die Verdünnung besser ist. Diese Walzenbildung führt bei südlichen Windrichtungen genau zum gegenteiligen Effekt mit einem erhöhten lokalen Zusatzbeitrags des Verkehrs, weil dann die Abgase direkt von der Straße zur Messstation geweht werden.

Windrichtungsabhängigkeiten können bei weiter entfernten Quellgebieten zu Fehlinterpretationen führen, wenn auf dem Transportweg Winddrehungen aufgetreten sind oder das Windfeld durch topographische Hindernisse wie Berge beeinflusst wird. Derartige Veränderungen des Windfeldes können mit Hilfe von Trajektorienmodellen beurteilt werden. Dabei wird der Weg der im Berliner Raum ankommenden Luftpakete auf der Basis von dreidimensionalen Daten für Wind, Temperatur und Luftdruck einer Vielzahl von meteorologischen Stationen in Europa berechnet. Die Luftmassen können so z.B. von Berlin aus startend über etwa zwei bis drei Tage zurückverfolgt werden (Rückwärtstrajektorie). Dieses Verfahren wurde verwendet, um für alle Tage mit hohen PM$_{10}$-Konzentrationen die Herkunft der Luftmassen zu bestimmen. Von hoher Bedeutung ist dabei die Frage, ob die Belastung aus grenzüberschreitendem Ferntransport aus östlichen Nachbarländern...
(Polen, Tschechien u.a.) resultiert. Um den großräumigen Ferntransport besser beurteilen zu können, wurden zusätzlich die vom Umweltbundesamt täglich erstellten Karten der deutschlandweit interpolierten PM10-Konzentrationsverteilung herangezogen.

Als Beispiel wird diese Art der Auswertung im Folgenden für die Belastungssituation am 10.02.2010 demonstriert. An diesem Tag wurde an der Verkehrsstation Frankfurter Allee ein Wert von 127 µg/m³ PM10 gemessen. Das Mittel über die städtischen Hintergrundstationen in Berliner Wohngebieten betrug an diesem Tag 122 µg/m³ und das Mittel über die Berliner Hintergrundstationen 101 µg/m³.

Wie die Karte des Umweltbundesamtes in Abbildung 5.12 zeigt, lag am 10.02.2010 in großen Teilen Ostdeutschlands die PM10-Konzentration über 100 µg/m³. Auf eine Herkunft aus grenzüberschreitendem Transport aus Polen deutet die nach Westen hin stark abnehmende Konzentration und die keilförmige Ausbildung des Gebietes hoher Konzentrationen mit den höchsten Konzentrationen an der östlichen Landesgrenze.

Eine Sonderstellung nimmt die Station Mariendorfer Damm im Jahr 2009 ein. Denn in diesem Jahr wurde direkt neben der Station ein Gebäude abgerissen und ein mehrstöckiger Neubau errichtet. Der Einfluss von Baustellen wird in Kapitel 5.3.2.3 näher untersucht.
Luftreinhalteplan 2011 bis 2017 für Berlin | 5 Ursachenanalyse

5.3.2.3 Überschreitung des Tagesgrenzwertes durch Baustellen

Auf Baustellen können je nach Art der Tätigkeiten hohe Feinstaubemissionen auftreten. Der Einfluss ist jedoch in der Regel lokal begrenzt, da es sich überwiegend um gröbere Staubpartikel handelt, die nicht über weite Strecken in der Atmosphäre transportiert werden. Dies gilt allerdings nicht für die Motoremissionen von Baumaschinen, die vergleichsweise hohe Dieselrußemissionen aufweisen.

Der Einfluss von Baustellen auf die Überschreitungshäufigkeit des PM$_{10}$-Tagesgrenzwertes an Messstationen lässt sich anhand der typischen Verläufe zeitlich hoch aufgelöster PM$_{10}$-Konzentrationen, d.h. auf der Basis der ½-h-Werte der kontinuierlichen PM$_{10}$-Messgeräte, erkennen. Bei direktem Baustelleneinfluss treten kurzzeitige hohe Konzentrations spitzen und höhere Konzentrationen während der Arbeitszeit auf, die deutlich über den Konzentrationen von sonst vergleichbaren Messstationen liegen. Dies soll in Abbildung 5.15 verdeutlicht werden. Sie zeigt für die Station Mariendorfer Damm Tagesgänge der PM$_{10}$-Konzentration auf der Basis von ½-h-Werten während der Zeit vom 19.07. bis 26.07.2009. Zu erkennen sind die hohen Konzentrationen an Wochentagen während der Arbeitszeit, die am Freitag deutlich früher endet. Als Vergleich dient der Mittelwert über alle anderen ver-

Für die Messstationen, für die Bauarbeiten in der näheren Umgebung bekannt waren, wurden vergleichbare Auswertungen durchgeführt. Im Ergebnis konnten im Jahr 2006 von den 59 Überschreitungstagen an der Messstation Mitte (Nr. 171) 17 Tage auf Bauarbeiten an der Jannowitzbrücken (z.B. Sandstrahlarbeiten) zurückgeführt werden. Dabei konnte auch die eingerichtete Einhausung des Arbeitsbereichs die hohen Zusatzkonzentrationen nicht ausreichend vermeiden. Von den 42 Überschreitungen an der Station Hardenbergplatz (Nr. 115) im Jahr 2006 wurden zwei durch Bauarbeiten verursacht. Im Jahr 2007 trat an der Station Karl-Marx-Straße (Nr. 220) eine Überschreitung aus diesem Grund auf.

Im Rahmen der laufenden UBA-Untersuchungen zur Minderung der Umweltbelastung durch mobile Maschinen wurden jedoch erste vorläufige Abschätzungen vorgenommen. Dazu wurden die Partikelemissionen aus dem Auspuff der auf einer größeren Straßenbau-stelle typischerweise eingesetzten Maschinen mit den Auspuffemissionen von 40.000 Kfz, die ohne Baustelle in einem bis zu 200 m langen Abschnitt einer Hauptverkehrsstraße pro Tag durchfahren, verglichen. Im Ergebnis liegt der Beitrag der Rußpartikel aus dem Auspuff der Baumaschinen in derselben Größenordnung oder sogar über dem des Kfz-Verkehrs. Werden die in Abbildung 5.6 dargestellten Anteile des Beitrags aus sonstigen Quellen innerhalb Berlins und aus Quellen außerhalb der Stadt zugrunde gelegt, ergibt sich im Fall der Straßenbaustelle ein Beitrag des Rußausstoßes der Motoren der eingesetzten Maschinen zur lokalen Gesamtbelastung an Feinstaub (PM$_{10}$) von gut 10 %.

5.4 Herkunft der Feinstaub (PM$_{2,5}$)-Belastung

Um die Ursachen der PM$_{2,5}$-Immissionen in Berlin näher zu untersuchen, wurde im Jahr 2007 ein Sondermessprogramm\(^{58}\) durchgeführt. Da bereits etwa 70 bis 75 % der Partikel bis 10 µm (PM$_{10}$) kleiner als 2,5 µm sind und damit zur PM$_{2,5}$-Fraktion gehören, erklärt die Ursachenanalyse für PM$_{2,5}$ auch einen großen Teil der Herkunft von Feinstaub PM$_{10}$. Die

bereits im Jahr 2002 durchgeführte, vergleichbare Studie für PM$_{10}$ wurde daher nicht wiederholt.

Auf der Grundlage der über ein Jahr gemessenen täglichen Daten der PM$_{2,5}$-Konzentrationen an Stationen innerhalb und außerhalb Berlins, Staubinhaltsstoffanalysen und Daten zur Emission von Partikeln und Vorläuferstoffen wie Schwefeldioxid, Ammoniak und Stickoxiden wurden die bedeutenden Verursacher identifiziert und deren Beitrag zur PM$_{2,5}$-Belastung bestimmt. Die für die PM$_{2,5}$-Immission in Berlin verantwortlichen Quellen wurden räumlich in einen lokalen Verkehrsteil sowie einen städtischen und (über)regionalen Beitrag aufgeschlüsselt.

Die Anteile der einzelnen Quellgruppen sind differenziert nach Quellregion in Abbildung 5.16 dargestellt.

Von allen Quellen trugen die abgasbedingten Partikel des gesamten Straßenverkehrs in Berlin mit 21 % (9 % lokaler Verkehrsteil + 12 % übriger Straßenverkehr in Berlin) am meisten zur PM$_{2,5}$-Belastung bei. Aus Abgasen des Straßenverkehrs stammten zudem weitaus 9 %, die von außen nach Berlin transportiert wurden. Der Beitrag aus Abrieb und Aufwirbelung des Berliner Straßenverkehrs zu PM$_{2,5}$ war mit 7 % sehr viel niedriger als bei vergleichbaren Verursacheranalysen für PM$_{10}$ (ca. 21 %), da der größere Teil der bei diesen Prozessen gebildeten Partikel größer als 2,5 µm ist.

5.5 Herkunft der Benzo[a]pyren-Belastung
Zur Begrenzung der Belastung durch polyzyklische aromatische Kohlenwasserstoffe wurde ein Zielwert für das als Leitkomponente dienende Benzo[a]pyren (BaP) von 1 ng/m³ festgelegt, der ab 2013 eingehalten werden soll. In den Jahren 2006 und 2010 wurde dieser Wert an zwei der fünf Messorte, an denen BaP gemessen wird, überschritten.

Eine Betrachtung des Jahresverlaufs der BaP-Konzentration wie in Abbildung 5.17 für das Jahr 2010 zeigt, dass hohe Konzentrationen ausschließlich in den Wintermonaten auftreten, während im Sommer an allen Stationen die Werte unter 0,2 ng/m³ liegen. Dies gilt auch für die Stationen an Straßen, wo mit den Dieselabgasen geringe Mengen von BaP emittiert werden. Dieser Jahresgang und die Emissionsbilanz für BaP lassen den Schluss zu, dass die BaP-Belastung zu mehr als 90 % auf die Verbrennung von Festbrennstoffen
wie Holz und Kohle zurückzuführen ist. Denn aus diesen Quellen stammen etwa 90 % des emittierten BaP in Berlin. Auch bundesweit stammen nach Angaben des Umweltbundesamtes gut 90 % des BaP aus dieser Quelle. Um den Zielwert von 1 ng/m³ ab 2013 sicher einhalten zu können, ist es daher notwendig, die Verbrennung von Holz und Kohle in Kleinfeuerungsanlagen zu reduzieren oder bei der Verbrennung emissionsmindernde Maßnahmen, wie Partikelfiltereinbauten, zu ergreifen.

Abbildung 5.17: Jahresgang der BaP-Konzentration im Jahr 2010

- Buch
- Schildhornstraße
- Hardenbergplatz
- Neukölln
- Frankfurter Allee
6 Bilanzierung bisheriger Maßnahmen

6.1 Umweltzone

Umsetzung
Im Rahmen des Luftreinhalte- und Aktionsplans wurde im August 2005 die Einführung einer Umweltzone als emissionsabhängiges Verkehrsverbot in zwei Stufen beschlossen. Aus Gründen der Verhältnismäßigkeit wurden den betroffenen Fahrzeughaltern mit den Einführungsterminen am 01.01.2008 für die Stufe 1 und 01.01.2010 für die Stufe 2 Übergangsfristen von mehr als zwei bzw. mehr als vier Jahren eingeräumt.

Die für die Kontrolle emissionsabhängiger Verkehrsverbote notwendige Kennzeichnung emissionsarmer Fahrzeuge wurde von der Bundesregierung mit dem Erlass der 35. BImSchV geregelt, die vier Schadstoffgruppen und drei farbige Plaketten einführe. Außerdem wurde ein Verkehrszeichen für die straßenverkehrsrechtliche Anordnung der Umweltzone geschaffen.

Die Umweltzone wurde umgesetzt als Anordnung eines Verkehrsverbots gemäß § 40(1) BImSchG in Verbindung mit der 35. BImSchV mit folgenden Kriterien:

- ab 01.01.2008 Verkehrsverbot für Fahrzeuge der Schadstoffgruppe 1
- ab 01.01.2010 Verkehrsverbot für Fahrzeuge der Schadstoffgruppe 1 bis 3

Der Reduzierung der wirtschaftlichen und sozialen Folgen des Verkehrsverbots für betroffene Fahrzeughalter diente einerseits die zweistufige Einführung mit langen Übergangsfristen. Zum anderen wurden für beide Stufen jeweils etwa 7.000 bis 8.000 befristete Einzelausnahmen in wirtschaftlichen oder sozialen Härtefällen erteilt. Für die Stufe 2 gilt zudem eine Ausnahmeregelung für nicht nachrüstbare Dieselfahrzeuge des Abgasstandards Euro 3 (gelbe Plakette), die im Jahr 2010 von etwa 12.000 Fahrzeugen in Anspruch genommen wurde.

Durch das Verkehrsverbot war der Anteil der Fahrzeuge mit grüner Plakette im Jahr 2010 um 1,5 bis 3 mal höher als bei der Trendentwicklung ohne Umweltzone zu erwarten gewesen wäre. Den höchsten Einhaltegrad der Umweltzone Stufe 2 erreichten Pkw (Otto + Diesel) mit 97 % bzw. Diesel-Pkw mit 91 %. Für Nutzfahrzeuge lagen die Anteile der Schadstoffgruppe 4 (grüne Plakette) zwischen 65 % für kleine Lkw bis 7,5 t und etwa 75 % für leichte Nutzfahrzeuge bzw. 73 % für Lkw über 7,5 t. Dabei stieg der Anteil der Fahrzeuge mit grüner Plakette bereits mit Einführung der Umweltzone im Jahr 2008 sprunghaft an, weil Fahrzeuge der Schadstoffgruppen 1 und 2 frühzeitig durch Fahrzeuge der Schadstoffgruppe 4 ersetzt wurden.
Der Anteil der hoch emittierenden Fahrzeuge ohne Plakette lag 2010 gegenüber der Trendentwicklung (ohne Umweltzone) um 70-85 % und der Anteil der Fahrzeuge mit roter Plakette um 50-70 % niedriger.

Umwalteffekt

Wirkung auf die Emission von Dieselruß und Stickoxiden

Trotz Ausnahmegenehmigungen konnte das Minderungspotenzial der 2. Stufe zu etwa 88 % ausgeschöpft werden.

Wirkung auf die Luftqualität

Ziel der Umweltzone ist die Reduzierung der Luftbelastung durch PM$_{10}$ und NO$_2$ im Vergleich zum Zustand ohne Umweltzone. Das bedeutet, dass bei einem meteorologisch bedingten Anstieg der großräumigen Luftbelastung durch schlechte Ausbreitungsbedingungen, Ferntransport von Luftschadstoffen oder Erhöhung der Emissionen aus anderen Quellen, wie Hausbrand durch höheren Heizbedarf bei tiefen Temperaturen auch eine Reduzierung des Anstiegs der Luftbelastung gerade an hoch belasteten Straßen ein Erfolg ist.

Die Beurteilung der Wirkung der Umweltzone auf die Luftqualität beruht auf Untersuchungen zur Veränderung der Verursacheranteile an der PM$_{2.5}$-Belastung aus dem Jahr 2007, also dem Jahr vor Einführung der Umweltzone sowie auf Auswertung von Luftqualitätsdaten für PM$_{10}$, NO$_2$ sowie kohlenstoffhaltigen Partikeln als charakteristischer Bestandteil von Dieselabgasen.

Diese Auswertungen ergaben für Feinstaub PM$_{10}$, dass ohne Umweltzone der Jahresmittelwert 2010 um etwa 2 µg/m3 oder ca. 7 % höher gewesen wäre. Damit konnten etwa

6.2 Verbesserung der kommunalen Linienbusflotte

Die Berliner Verkehrsbetriebe betreiben in Berlin eine Busflotte von derzeit etwa 1.320 Bussen, die etwa 6 % des in Berlin verkauften Dieselkraftstoffes verbrauchen. Busse der BVG werden bereits seit Ende der 1990er Jahre schrittweise mit Partikelfiltern ausgestattet. Vor Inkrafttreten des Luftreinhalteplans 2005 waren etwa 72 % der Busse mit Partikelfiltern ausgerüstet. Mit diesen Filtern wird die Partikelemission der Busse um ca. 70-90 % reduziert. Neben der Partikelemission tragen die Busse lokal auch signifikant zur Belastung durch Stickoxide bei. Um die Emissionen der Busse zu reduzieren, wurden im Luftreinhalteplan 2005 folgende Ziele festgelegt:

- Umrüstung mit Rußfiltern: vollständige Ausstattung bis 2010
- Umrüstung auf Euro 5/EEV-Standard: 600 Busse bis 2010

Die Anforderungen an die Busse gelten auch für Subunternehmer der BVG.

Umsetzung

Umwelteffekt
Aus der Flottenzusammensetzung ergibt sich für die Flotte des Jahres 2004 mit den Daten des HBEFA 3.1 ein mittlerer Emissionsfaktor für Dieselruß von 0,47 g/km und für Stickoxide von 18,03 g/km. Die Flotte des Jahres 2011 erreicht mittlere Emissionsfaktoren für Dieselruß von 0,047 g/km (Ziel Luftreinhalteplan: 0,029 g/km) und für Stickoxide von 9,71 g/km (Ziel: 8,95 g/km).

Bei den Stickoxiden sank der mittlere spezifische Schadstoffausstoß um 46 %, angestrebt waren 50 %. Das Ziel wurde somit annähernd erreicht. Der größte Teil der Stickoxidemissionen stammt derzeit von Bussen mit dem Abgasstandard Euro 3.

6.3 Verbesserung des kommunalen Fuhrparks

Umsetzung

Mit der BSR und den Berliner Wasserbetrieben wurden im Rahmen von Kooperationsvereinbarungen neben Klimaschutzzieilen auch Vereinbarungen zum Fuhrpark getroffen, die die Modernisierung und einen umweltbewussten Betrieb, z.B. Fahrerschulungen, beinhalteten.
ten. Eine Abfrage zum Fahrzeugbestand der Berliner Verwaltung und öffentlicher Einrichtungen wurde Ende 2010 durchgeführt.

<table>
<thead>
<tr>
<th>Behörde/Einrichtung</th>
<th>Anteil der Dieselfahrzeuge mit Rußfilter oder Euro 5/EEV an den Dieselfahrzeugen</th>
<th>Anteil der Fahrzeuge (Otto und Diesel) Schadstoffgruppe 4 (grüne Plakette)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senatsverwaltungen mit nachgeordneten Einrichtungen (ohne LVwA, Polizei, Feuerwehr, BSR, BWB, BVG)</td>
<td>54 %</td>
<td>77 %</td>
</tr>
<tr>
<td>Landesverwaltungsamt (LVwA)</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Polizei</td>
<td>72 %</td>
<td>82 %</td>
</tr>
<tr>
<td>Feuerwehr</td>
<td>90 %</td>
<td>87 %</td>
</tr>
<tr>
<td>Berliner Stadtreinigung (BSR)</td>
<td>45 %</td>
<td>73 %</td>
</tr>
<tr>
<td>Berliner Wasserbetriebe (BWB)</td>
<td>53 %</td>
<td>73 %</td>
</tr>
<tr>
<td>BVG</td>
<td>87 %</td>
<td>89 %</td>
</tr>
<tr>
<td>Bezirksämter</td>
<td>43 %</td>
<td>52 %</td>
</tr>
</tbody>
</table>

Umwelteffekt
Eine Abschätzung der Emissionen des öffentlichen Fuhrparks in seiner Gesamtheit war nicht möglich, da die hierzu notwendigen Fahrleistungen nur unvollständig bekannt sind. Für die BVG wurden die erreichten Emissionsminderungen bereits in Kapitel 6.2 dargestellt.

6.4 Förderung von Erdgasfahrzeugen

Umsetzung

Als einer der großen Flottenbetreiber in Berlin hat die Berliner Stadtreinigung (BSR) seit 2003 etwa 50 Erdgas-Abfallsammelfahrzeuge angeschafft und für die Betankung eine eigene Tankstelle eingerichtet. Diese Investitionen wurden aus dem Umweltentlastungsprogramm Berlin gefördert.

Von ursprünglich zwei Erdgastankstellen in Berlin im Jahr 2000 wuchs das Netz auf 17 Stationen im Jahr 2010. Im Berliner Umland finden sich weitere acht Erdgastankstellen. Um die Förderung von Erdgasfahrzeugen fortzusetzen, wurde dieses Ziel in Kooperationsvereinbarungen mit der GASAG zur gemeinsamen Umsetzung der energie- und umweltpoliti-

Die Anschaffung von Erdgasfahrzeugen wird derzeit von der Berliner GASAG in Form von Tankgutschein in Höhe von 111 bis 1.500 € gefördert. Der Anteil von Erdgasfahrzeugen konnte durch die Förderung und die steuerbegünstigten Kraftstoffpreise zwar zwischen 2006 und 2010 verdoppelt werden, dennoch bleibt der Anteil der etwa 3.500 in Berlin zugelassenen Erdgasfahrzeugen an der Zahl der insgesamt zugelassenen 1,2 Millionen Fahrzeugen verschwindend gering und beträgt nur 0,3 %. Auch in der aktiven Flotte auf der Straße liegt der Anteil unter einem Prozent.

Umwelteffekt

Im Rahmen der o.g. Projekte wurden anstelle von Dieselfahrzeugen mit dem Abgasstandard Euro 4 (Taxen und leichte Nutzfahrzeuge) insgesamt 1.250 Erdgasfahrzeuge angeschafft. Ausgehend von einer Jahresfahrleistung von 30.000 km/a für leichte Nutzfahrzeuge und 60.000 km/a für Taxen und Fahrschulfahrzeuge wurden die vermiedenen Stickstoff- und Partikelemissionen mit Hilfe der mittleren Emissionsfaktoren des HBEFA 3.1 für den Stadtverkehr berechnet. Danach konnten mit den Erdgasfahrzeugen etwa 3 t Dieselruß und 35 t Stickoxide pro Jahr vermieden werden. Lokal, d.h. insbesondere im Bereich von Taxiständen oder Straßen mit einem hohen Anteil von Taxifahrzeugen ist jedoch von einer höheren Entlastungswirkung auszugehen.

6.5 Förderung des Umweltverbundes

Umsetzung

Der StEP Verkehr 200366 verband in der Teilstrategie Umweltverbund siedlungsstrukturelle Maßnahmen, die dem generellen Trend der Wegeverlängerung entgegen wirken sollen, mit Maßnahmen zur Steigerung der Attraktivität des ÖPNV und des Rad- und Fußverkehrs.

Zur Förderung des Radverkehrs wurde 2004 vom Berliner Senat eine Radverkehrsstrategie80 beschlossen, die Maßnahmen wie den Ausbau der Radverkehrswege, Ausweisung von Radrouten, die Mitnahme in den öffentlichen Verkehrsmitteln, aber auch die Verkehrssicherheitsarbeit bis hin zur Mobilitätserziehung an Schulen und zur Öffentlichkeitsarbeit, z.B. die Kampagne „Motor aus – Kopf an“, umfasst. Im Ergebnis konnte bis 2009 sowohl die Länge der Radverkehrswege als auch die Zahl der Abstellanlagen gegenüber 2002 um etwa 60 % gesteigert werden. Die monatlichen Fahrradzählungen an festen Zählpunkten

69 Senatsbeschluss „Radverkehrsstrategie für Berlin“. Drucksache 15/3360, Abgeordnetenhaus Berlin 04.11.2004
(Pegelzählungen) der letzten Jahre zeigen, dass der Radverkehr seit 2004 um etwa 34 % zugenommen hat und weiterhin einen steigenden Trend aufweist.

\(^{71}\) Senatsverwaltung für Stadtentwicklung: Fußverkehrsstrategie für Berlin – Ziele, Maßnahmen, Modellprojekte. Berlin 2011

Umweltwirkung

Der Rückgang der Pkw-Verkehrsmengen wird im Verkehrsmodell bei der Berechnung der netzweiten Emissionen und Immissionen des Straßenverkehrs berücksichtigt. Dabei wurde allerdings nicht betrachtet, wie hoch die Belastung ohne diesen Verkehrsrückgang wäre. Die Modellrechnungen früherer Jahre sind aufgrund der geänderten Emissionsfaktoren für den Straßenverkehr auch nicht direkt vergleichbar. Eine vereinfachte Schätzung des Verlagerungseffektes ist anhand der Anteile des Pkw-Verkehrs an der lokalen verkehrsbedingten Zusatzbelastung in einer Straße (59 % für PM\textsubscript{10}; 52 % für NO\textsubscript{2}) und dem Anteil der Zusatzbelastung an der Gesamtbelastung in einer Straßenschlucht (18 % bei PM\textsubscript{10}; 44 % bei NO\textsubscript{2}) möglich. Eine Erhöhung des Pkw-Beitrags um 10 bis 14 % führt dann rechnerisch zu höheren Gesamtbelastungen durch PM\textsubscript{10} von etwa 2 bis 3 % und durch NO\textsubscript{2} von 4 bis 6 %.

6.6 Parkraumbewirtschaftung

Parkraumbewirtschaftung vermindert die Luftschadstoffbelastung durch Minderung des umfangreichen Parksuchverkehrs und unterstützt den Umstieg von Pendlern auf Verkehrsmittel des Umweltverbundes, was zu einer Verminderung des Kfz-Zielverkehrs führt. Der Stadtentwicklungsplan Verkehr sieht deshalb eine schrittweise Ausweitung der Parkraumbewirtschaftung auf alle Stadträume mit hohem Nachfragedruck und begrenztem Parkraumangebot vor. Dabei soll die Gebührenhöhe gebietsangemessen differenziert werden.

Umsetzung

73 Senatsverwaltung für Stadtentwicklung: Leitfaden Parkraumbewirtschaftung. Berlin 2004
Umweltwirkung

Ein weiteres Ziel aus Umweltsicht ist die Dämpfung des Pkw-Zielverkehrs durch Verlagerung auf den Umweltverbund, insbesondere von Berufs- und Ausbildungspendlern. Diese Wirkung spiegelt sich im Rückgang des Pkw-Verkehrs und seiner Wirkung auf die Luftqualität wieder, der bereits in Kapitel 6.6 (Förderung des Umweltverbundes) dargestellt wurde. Parkraumbewirtschaftung ist damit auch eins der Instrumente, um den Umweltverbund zu unterstützen.

6.7 Umweltsensitive Verkehrssteuerung
langs angeströmten Straßenschlucht werden Abgase besser verdünnt, so dass eine Reduzierung der Emissionen durch verkehrsverflüssigende Maßnahmen für die quer angeströmte Straße, in denen die Verdünnung gerade ungünstig ist, nicht zu einer signifikanten Erhöhung der Schadstoffkonzentration in der längs angeströmten Straße führen. Ziel einer umweltsensitiven Verkehrssteuerung ist es daher, eine an die jeweilige Situation angepasste Auswahl der optimalen Verkehrssteuerung zu erreichen.

Umsetzung
In Berlin wurden im Rahmen des Modellprojekts iQmobility75 u.a. die für eine umwelt sensible Verkehrssteuerung erforderlichen Monitoring- und Modellierungssysteme zur Bestimmung der Verkehrslage und der Luftqualität entwickelt und in einem Feldversuch in der Leipziger Straße (s. Abbildung 6.5) von September bis Dezember 2007 erprobt. Ziel war es, den Einfluss unterschiedlicher zulässiger Höchstgeschwindigkeiten (50 km/h und 30 km/h) sowie bei Tempo 50 zwei unterschiedliche Steuerprogramme für die Lichtsignalanlagen (Festzeit- bzw. verkehrsabhängige Steuerprogramme) zu untersuchen. Tempo 30 wurde nur mit einer Festzeitsteuerung betrieben, d.h. die grüne Welle wurde auf Tempo 30 ausgerichtet und tageszeitenabhängig geschaltet. Bei der verkehrsabhängigen Steuerung wurde die grüne Welle auf Tempo 50 ausgerichtet und in Abhängigkeit von der gemessenen Verkehrsbelastung geschaltet.

Die Ergebnisse des Feldversuchs wurden in einer Fahrtrichtung stark durch eine Baustelle beeinträchtigt, die unabhängig von Koordinierung in der Hauptverkehrszeit immer zu einem starken Rückstau führte. Die verkehrliche Wirkung der drei Szenarien lässt sich wie folgt zusammenfassen:

- Die verkehrsabhängige Auswahl eines Signalzeitenplanes für die Lichtsignalanlagen trägt eher zur Verstetigung des Verkehrslusses bei als eine Festzeitsteuerung der Ampelanlagen. Die optimale Koordinierungs geschwindigkeit der Lichtsignalanlagen ist jedoch von den örtlichen Gegebenheiten abhängig.

- Aufgrund des hohen Verkehrsaufkommens in der Leipziger Straße lag die mittlere Geschwindigkeit im Tempo-50-Szenario nur zwischen 26 und 32 km/h. Bei einer empfohlenen Richtgeschwindigkeit von Tempo 30 sank das mittlere Geschwindigkeitsniveau weiter ab, aber relativ moderat: nämlich nur auf 25 km/h. Die empfohlene Richtgeschwindigkeit von Tempo 30 wirkt mit der entsprechenden Lichtsignalkoordinierung auf Tempo 30 (erprobt wurden nur eine Festzeitsteuerung) über den Streckenabschnitt von 1,6 km in der Leipziger Straße bei einer längeren mittleren Fahrzeit von 12 bis 26 Sekunden insbesondere auf die gefahrenen Höchstgeschwindigkeiten geschwindigungsdämpfend.

Bei Überschreiten der Kapazitätsgrenzen durch hohes Verkehrsaufkommen lässt sich der Verkehrsfluss durch eine verkehrsabhängige Signalzeitenplanauswahl oder Geschwindigkeitsvorgaben nicht mehr beeinflussen.

Die Zahl der Halte auf der Versuchsstrecke war bei Tempo 30 in der einen Richtung gleich hoch und in der anderen niedriger als bei Tempo 50 (beides mit Festzeitsteuerung).

Mit Tempo 30 wurden im Mittel bis zu 18 % höhere Konstantfahrt-Anteile erreicht. Dies bedeutet, dass die Beschleunigungsphasen, in denen stets erhöhte Emissionen auftreten, bei Tempo 30 kürzer sind.

Umweltwirkung

Wie zu erwarten, hatten Stausituationen den größten Einfluss auf die Emission. Dies zeigt beispielhaft der Tagesgang der NOx-Emission in Abbildung 6.5, die während der nachmittäglichen Stausituation, die im Wesentlichen durch eine Baustelle verursacht wurde, stark anstieg. Könnte diese Stausituation vermieden werden, könnte hier eine Emissionsminderung um ca. 10 % bezogen auf die gesamte Emission pro Tag erreicht werden.

Der Vergleich des summierten Schadstoffausstoßes für die jeweiligen Szenarien ergab, dass die Koordinierung der Lichtsignalanlagen auf 30 km/h bei den gemessenen Verkehrsverhältnissen zu einem Rückgang der Stickoxidedemissionen um ca. 4 % und der Dieselrußemissionen um ca. 3 % führte.

Die Auswirkung auf die lokale Luftqualität in der Leipziger Straße wurde mit dem Messbus der Senatsverwaltung für Stadtentwicklung und Umwelt gemessen, der während des Feldversuchs in der Leipziger Straße stationiert war (s. Abbildung 6.5).

6.8 Geschwindigkeitsbeschränkungen auf Hauptverkehrsstraßen

Abbildung 6.6: Tagesgang der NOx-Emissionen in Abhängigkeit von der Verkehrssituation in der Leipziger Straße am Montag bei Tempo 50 mit verkehrsabhängiger Lichtsignalkoordinierung in Fahrtrichtung Osten zwischen Potsdamer Platz und Wilhelmstraße im Projekt IQMobility 2007

Senatsverwaltung für Stadt-entwicklung und Umwelt: Antwort auf die Kleine Anfrage der Abgeordneten Claudia Hämmerling, Abgeordnetenhaus Berlin Drs. 17/10027. Berlin Januar 2012
Tempo 30 an Hauptverkehrsstraßen: Schildhornstraße

Neben den hohen Luftschadstoffbelastungen weist die Schildhornstraße auch sehr hohe Belastungen durch Verkehrslärm auf. Zur Reduzierung der Lärm- und Luftbelastung wurde eine ganztägige Geschwindigkeitsbeschränkung von 30 km/h (Tempo 30) aufgrund zweier Gerichtsentscheide angeordnet.

Umsetzung

Die mittlere Geschwindigkeit im Bereich der Luftmessstation beträgt nun 33,6 km/h. Damit konnte die Geschwindigkeit dauerhaft um etwa 7 km/h bzw. 18 % reduziert werden.
Eine Verkehrsverlagerung in das umliegende Straßennetz wurde nicht beobachtet, da auch dort überwiegend Tempo 30 bei Rechts-vor-Links-Regelungen gilt, so dass – abgesehen von großräumigen Umfahrungen – keine schnelleren Ausweichstrecken zur Verfügung stehen.

Auswertungen der mittleren stündlichen Geschwindigkeit in Abhängigkeit von der Fahrzeuganzahl (Qv-Diagramme) zeigen, dass in der Schildhornstraße nur an sehr wenigen Stunden im Jahr Verkehrsstörungen mit einem Rückgang der Geschwindigkeit und Verkehrsmenge auftreten. Es herrscht damit fast durchgehend ein stetiger Verkehrssfluss ohne Störungen durch Staus.

Umwelteffekt

Für die Bestimmung der emissionsmindernden Wirkung der Geschwindigkeitsreduzierung auf Tempo 30 auf Hauptverkehrsstraßen liegen derzeit weder für Motoremissionen noch für Emissionen durch Abrieb oder Aufwirbelung standardisierte Modelle vor.

Die Auswertung der Messungen für die Schildhornstraße zeigten, dass nach Einführung von Tempo 30 die verkehrsbedingten lokalen Zusatzbelastungen für PM$_{10}$ um 30 %, für Stickoxide (NO$_x$) um 18 % und für Stickstoffdioxid (NO$_2$) um 15 % sank.

Die Reduzierung der Gesamtbelastung an einer Straße hängt dann zusätzlich vom Beitrag der städtischen Hintergrundbelastung ab, die durch diese Maßnahme nicht beeinflusst wird. An der Messstation Schildhornstraße wäre ohne Tempo 30 der PM$_{10}$-Jahresmittelwert im Jahr 2006 um 2 bis 3 µg/m3 höher gewesen und es wären an sieben Tagen zusätzlich Überschreitungen des Tagesgrenzwertes zu erwarten gewesen. Für den Jahresmittelwert der NO$_2$-Gesamtbelastung lag der Minderungseffekt zwischen 5 und 9 µg/m3.

Bei der Übertragung der Ergebnisse auf andere Straßen muss berücksichtigt werden, dass ähnliche Rahmenbedingungen gegeben sein sollten, d.h. die Einhaltung von Tempo 30 muss ausreichend kontrolliert werden und Störungen durch Staus sollten selten sein.

6.9 Lkw-Durchfahrverbot in der Silbersteinstraße in Berlin-Neukölln

Die Silbersteinstraße ist eine wichtige Verbindung zwischen den Bezirken Neukölln und Tempelhof-Schöneberg mit einer Verkehrsbelastung von ca. 14.000 Fahrzeugen pro Tag in einer Straßenschlucht von ca. 19 m Breite mit einer geschlossenen Randbebauung von ca. 22 m Höhe. Die Messstation in der Silbersteinstraße war im Jahr 2005 die erste Station,
an der die 36. Überschreitung des PM$_{10}$-Tagesmittelwertes von 50 µg/m3 registriert und der Feinstaubgrenzwert überschritten wurde (am 12.04.2005).

Da mit der Autobahn BAB100 eine geeignete Ausweichstrecke ohne Wohnbebauung zur Verfügung steht, führt ein Lkw-Durchfahrverbot für die Silbersteinstraße nicht zu einer signifikanten Erhöhung der Luftbelastung an anderen empfindlichen Orten.

Umsetzung

Wie Verkehrszählungen zeigen, konnte der Lkw-Anteil von 6,0 % auf 2,6 % bis 3,2 % halbiert werden.

Umwelteffekt

Durch die gesunkene Zahl der Lkw sank die Feinstaubemission um insgesamt 28 %, wobei bezogen auf die Fahrzeugflotte 2005 die Emissionen von Dieselruß um 17 % und die Emissionen durch Abrieb und Aufwirbelung um 32 % zurückgingen. Letzteres liegt darin begründet, dass das Fahrzeuggewicht einen hohen Einfluss auf Abrieb und Aufwirbelung von Partikeln hat, so dass Lkw sehr viel mehr Partikel aufwirbeln als Pkw. Die Stickoxidemissionen sanken um 26 %.

Die Wirkung auf die Luftqualität wurde zunächst mit dem Modell Immis$^\text{luft}$ als Jahresmittelwert berechnet. Für Feinstaub PM$_{10}$ ergab sich eine Abnahme des Verkehrsbeitrags um rund 30 % auf 7,1 µg/m3. Für NO$_2$ betrug der Rückgang in den Modellrechnungen 10 % auf 45,7 µg/m3 (Gesamtkonzentration3).

Für die Auswertung der Messungen der Messstation Silbersteinstraße wurde auch der Verlauf der Messwerte an den Verkehrsstationen Frankfurter Allee und Schildhornstraße als Referenzstation ohne Lkw-Fahrverbot sowie die Messwerte der städtischen Hintergrundstation in der Nansenstraße herangezogen, um Einflüsse der Meteorologie und der Vorbelastung berücksichtigen zu können.

Für Feinstaub PM$_{10}$ ergaben die Messwertvergleiche des Zeitraum Juli 2004 bis März 2005 mit Juli 2005 bis März 2006, dass die Feinstaubkonzentration ohne das Lkw-Fahrverbot im Mittel um 3 bis 4 µg/m3 oder 7 bis 9 % höher gewesen wäre. Mit Hilfe eines Regressionsmodells konnte zudem geschätzt werden, dass aufgrund des Lkw-Durchfahrverbots im Untersuchungszeitraum 11 Überschreitungen vermieden werden konnten, d.h. ohne das Fahrverbot wären an der Silbersteinstraße von Mai bis Dezember 2005 44 Überschreitungen zu erwarten gewesen, gemessen wurden 33. Dies ist ein Rückgang um 25 %.

Für NO$_2$ ergab sich ein Rückgang der Messwerte in der Silbersteinstraße für den Zeitraum 2005 nach Einführung des Fahrverbots gegenüber dem Vergleichszeitraum von 4 µg/m3 bzw. 7 %. In der gleichen Zeit stieg jedoch die NO$_2$-Konzentration im städtischen Hintergrund, die als Vorbelastung auch die Messwerte in der Silbersteinstraße beeinflusst, um 2 µg/m3 an. Wird dies berücksichtigt, entspricht die Reduzierung der NO$_2$-Konzentration durch das Lkw-Durchfahrverbot 6 µg/m3 bzw. 10 %.

6.10 Kommunikation nachhaltiger Mobilität

Kampagne „Sauberer Fuhrpark“

Um Berliner Unternehmen bei der Modernisierung ihres Fuhrparks – insbesondere in Hinblick auf die Umweltzone – zu unterstützen, beauftragte die Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz Berlin eine Beratungskampagne, die unter dem Titel

6.11 Erprobung der Partikelfilternachrüstung von Fahrgastschiffen

Umsetzung

In der Praxis zeigte sich, dass bei der Auslegung der Filtersysteme der Abgasgegendruck besonders beachtet werden muss. Hier müssen auch bei Motorvollast ausreichende Kapazitätsreserven des Filters vorgesehen werden, da sonst der Filter einen zu hohen Gegendruck aufbauen kann, so dass ein Bypass-Ventil zur Umgehung der Filterkartusche geöffnet werden muss. Dadurch entstehen kurzzeitig erhöhte Emissionen, weil in diesem Fall die Abgase nicht mehr gefiltert werden. Des Weiteren hat sich gezeigt, dass die Filter recht heiß werden können, so dass eine ausreichende Isolierung wichtig ist. Ein Kraftstoffmehrverbrauch durch die Filter konnte bisher nicht festgestellt werden.

Umweltwirkung

Für zukünftige Nachrüstungen ist eine finanzielle Förderung von 50 % aus dem Umwelt-entlastungsprogramm vorgesehen, die jede Reederei erhalten kann, die die Kriterien erfüllt und entsprechend qualitativ hochwertige Filter einbaut (s. Kapitel 9; Maßnahme M 2.8).

6.12 Staubemissionen von Baustellen
Als eine der sonstigen Verursacher von Feinstaubemissionen sind die zahlreichen in Berlin vorhandenen Baustellen identifiziert worden, wobei nicht jede Baustellentätigkeit zwangsläufig zu Staubemissionen führt. Zur Verminderung der Staubemission von Baustellen sollten nach dem Luftreinhalte- und Aktionsplan 2005-2010 folgende Maßnahmen umgesetzt werden:

- Information der Bauherren zu Möglichkeiten der Staubminderung auf Baustellen,
- Prüfung, ob auf Baustellen in besonders belasteten Bereichen die Benutzung partikelgeminderter Baumaschinen verlangt werden kann und welche Kriterien dafür in Frage kommen und

Umsetzung

Zur weiteren Streuung wurde der Leitfaden auch den Unternehmensverbänden, Kammern sowie den Hochschulen, die baufachliche Studiengänge anbieten, zur Verfügung gestellt.

Das Bundes-Immissionsschutzgesetz sowie das 2005 in Kraft getretene Landes-Immissionsschutzgesetz Berlin (LImSchG Bln) haben bisher noch nicht dazu beitragen können, dass die Benutzung Partikel geminderter Baumaschinen gegen den Willen der Baustellenbetreiber vorangetrieben werden konnte. Dies liegt nicht zuletzt auch daran, dass keine

Umwelteffekt

Ein Umwelteffekt durch die Erarbeitung und Veröffentlichung des Leitfadens zur Vermeidung und Verminderung von Staubemissionen auf Baustellen sowie das Werben um die im Leitfaden beschriebenen Minderungsmaßnahmen bei den entsprechenden Fachverbänden kann nicht abgeschätzt werden, da die Veröffentlichung erst im Juni 2010 erfolgte und eine Bewertung bestenfalls über die Auswertung der Beschwerdezahlen über mehrere Kalenderjahre möglich ist.

6.13 Intensivierte Straßenreinigung

Umsetzung

Die Wirkung von intensivierten Straßenreinigungsmethoden wurde in zwei Messkampagnen in der Frankfurter Allee zwischen Proskauer Straße und Möllendorfstraße untersucht\(^8.5\). Hier befindet sich auch eine Messstation (Nr. 174) des Luftgütemessnetzes.

\(^{8.5}\) Düring, I., Zippack, I.: Auswertungen der Messungen des BLUME während der Abspülmaßnahme am Abschnitt Frankfurter Allee 86. im Auftrag der Senatsverwaltung für Stadtentwicklung Berlin, Radebeul 2004

Düring, I., Hoffmann, T., Nitzsche, E.: Auswertungen der Messungen des BLUME während der verbesserten Straßenreinigung an Abschnitt Frankfurter Allee 86. im Auftrag der Senatsverwaltung für Stadtentwicklung Berlin, Radebeul 2007
Umwelteffekt
Für die Bewertung der Wirkung auf die Feinstaubkonzentration wurden die kontinuierlichen PM\textsubscript{10}-Halbstundenwerte und die NO\textsubscript{x}-Immissionsdaten des Luftgütemessnetzes sowie ebenfalls für diesen Zeitraum erhobene lokale Verkehrszählungen ausgewertet.

Eine signifikante Reduzierung der Feinstaubkonzentrationen konnte für keines der beiden Verfahren der intensivierten Straßenreinigung nachgewiesen werden. Die PM\textsubscript{10}-Gesamtbelastung an trockenen Tagen mit Straßenspülung unterschied sich nicht relevant von Tagen ohne Straßenspülung. Die Maßnahme lieferte somit nicht den erhofften Effekt. Auch die häufigere Straßenreinigung mit der verbesserten Kehrmaschine brachte keine signifikante Reduzierung. Als Obergrenze des Minderungseffekts ergaben die Auswertungen eine Abnahme der Feinstaubkonzentration von 0,4 µg/m3 an Tagen mit Straßenreinigung.
7 Immissionsprognose 2015/2020
ohne weitere Maßnahmen (Trendfall)

Um beurteilen zu können, in welchem Umfang in Berlin weitere Maßnahmen zur Verbesse-
rung der Luftqualität notwendig sind, wird in diesem Kapitel zunächst untersucht, wie sich die Luftbelastung in den nächsten Jahren im sogenannten Trendfall ohne zusätzliche Maß-
nahmen entwickeln wird. Die Prognoserechnungen wurden für die Jahre 2015 und 2020
durchgeführt. Das Jahr 2015 ist dabei von besonderer Bedeutung, weil ab 2015 auch nach Inanspruchnahme der Fristverlängerung die Luftqualitätswerte für Stickstoffdioxid einzuhal-
ten sind. Die Prognose für 2020 soll die weitere Entwicklung aufzeigen – wobei durch

den in den Jahren 2014 bis 2016 verbindlich werdenden Abgasstandard Euro 6 signifikante
Verbesserungen der Luftqualität erwartet werden. Im Rahmen der Trendprognosen wur-
den die bestehenden und die bereits beschlossenen und bis 2020 in Kraft tretenden gesetz-
lchen Regelungen sowie die bereits in Berlin aufgrund des Luftreinhalteplans 2005 und
des Stadtentwicklungsplans Verkehr eingeführten oder beschlossenen Maßnahmen be-
rücksichtigt, z.B. die Umweltzone Stufe 2. Außerdem sind Prognosen über die Entwicklung
der Bevölkerung und anderer Strukturdaten in die Modellrechnungen eingeflossen.

Die Prognose der Luftschadstoffbelastung für die beiden Jahre 2015 und 2020 umfasst folgende Schritte:

- Abschätzung der Schadstoff-Vorbelastung im regionalen Hintergrund unter Berück-
sichtigung von PAREST-Daten,
- Prognose der Verkehrsbelastung im Hauptstraßennetz und der Entwicklung der Fahr-
zeugflotte,
- Modellierung des urbanen Hintergrunds unter Verwendung prognostizierter Emissi-
onsentwicklungen für Berliner Quellen,
- Berechnung der Immissionskonzentrationen und der möglicherweise von Grenzwert-
überschreitungen betroffenen Straßenabschnittslängen und Betroffenenzahlen für
Stickstoffdioxid und Feinstaub an Hauptverkehrsstraßen.

Zusätzlich wurde für ausgewählte Abschnitte mit prognostizierten Grenzwertüberschrei-
tungen im Jahr 2015 eine Berechnung der notwendigen Emissionsminderung in der ver-
kehrsbedingten Zusatzbelastung zur Erreichung der Grenzwerte durchgeführt.

Die Ergebnisse werden nur für Stickstoffdioxid und Feinstaub PM$_{10}$ dargestellt, nicht aber für Feinstaub PM$_{2,5}$, da die diesbezüglichen Luftqualitätsgrenzwerte eingehalten werden.

7.1 Trendentwicklung der Immission im regionalen Hintergrund

Im Rahmen des Projektes PAREST wurden die aufgrund der bestehenden gesetzlichen
Regelungen zu erwartenden Emission für die Jahre 2015 und 2020 prognostiziert86. Mit

diesen Daten sowie unter Verwendung der Meteorologie des Jahre 2005 wurden die Luft-

schadstoffkonzentrationen für den regionalen Hintergrund mit dem RCG-Modell berechnet.
Dabei wurden die Emissionen Berlins nicht berücksichtigt, da diese für die Berechnung des
ständischen Beitrags Berlins bei der Modellierung des urbanen Hintergrunds eingesetzt
und nicht doppelt verwendet werden dürfen.

Für alle Stoffe wurde ein Rückgang der Belastung im regionalen Hintergrund berechnet,
der jedoch mit 0,6 µg/m3 im Jahr 2015 und 1 µg/m3 im Jahr 2020 für Feinstaub und
1,8 µg/m3 (in 2015) bis 2,7 µg/m3 (in 2020) für NO$_2$ sehr bescheiden ist. Denn in dem
betrachteten Zeitraum treten kaum zusätzliche gesetzliche Anforderungen zur Emissions-
minderung in Kraft. Den größten Effekt hat die Einführung des Abgasstandards Euro 6 für
Kraftfahrzeuge.

86 Builjes, P., Jörß, W., Stern, R., Theloke, J.: F&E-Vorhaben: „Strategien zur Verminderung der Feinstaub-
belastung-PAREST“. Abschlussbericht. Berlin Dezember 2010
7.2 Trendentwicklung der Verkehrsbelastung und Fahrzeugflotte

Die Prognose der Entwicklung der Emissionen des Kfz-Verkehrs basiert einerseits auf Annahmen zur Entwicklung der Fahrleistungen der verschiedenen Fahrzeuggruppen in Berlin (Verkehrsbelastung) und andererseits auf Annahmen zur technischen Modernisierung der eingesetzten Fahrzeugflotte.

Berücksichtigt wurden für das Prognosejahr 2015 insbesondere folgende Entwicklungen:
- Eröffnung des Flughafens Berlin-Brandenburg in Schönefeld,
- Schließung des Flughafens Tegel,
- Errichtung neuer Straßenverbindungen wie die Süd-Ost-Verbindung (Spreequerung) oder der Ausbau der A10 im Norden Berlins,
- veränderte Verkehrsorganisation und Straßenrückbau.

Für das Prognosejahr 2020 wurde als Infrastrukturveränderung der Bau der Autobahnverlängerung A100 vom Autobahndreieck Neukölln nach Treptow in die Modellierung einbezogen.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2009</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mrd. km/Jahr</td>
<td>Anteil</td>
<td>Mrd. km/Jahr</td>
</tr>
<tr>
<td></td>
<td>Kfz gesamt</td>
<td></td>
<td>Kfz gesamt</td>
</tr>
<tr>
<td></td>
<td>10,16</td>
<td>100%</td>
<td>10,27</td>
</tr>
<tr>
<td></td>
<td>Pkw</td>
<td>8,77</td>
<td>8,86</td>
</tr>
<tr>
<td></td>
<td>LNfz < 3,5 t</td>
<td>0,79</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>SNfz > 3,5 t</td>
<td>0,38</td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td>Bus</td>
<td>0,12</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>Kraftrad</td>
<td>0,1</td>
<td>0,1</td>
</tr>
</tbody>
</table>

\(^7\) PTV Planung Transport Verkehr AG, TCI Röhling Transport Consultation International: Gesamtverkehrsprognose 2025 für die Länder Berlin und Brandenburg – Abschlussbericht. im Auftrag der Senatsverwaltung für Stadtentwicklung Berlin und des Ministeriums für Infrastruktur und Raumordnung Brandenburg. Berlin 2009
Für die Prognose der Flottenzusammensetzung 2015 und 2020 wurde aufbauend auf den Ergebnissen der Kennzeichenerhebung des Jahres 2010, d.h. unter Berücksichtigung der Stufe 2 der Umweltzone, die Flottenentwicklung anhand der im Handbuch für Emissionsfaktoren verwendeten Austauschraten fortgeschrieben. Für den kommenden Abgasstandard Euro 6 wurden jeweils die im HBEFA 3.1 angegebene Anteile übernommen wurden. Einzige Ausnahme sind die Linienbusse, für die aufgrund der Forderungen des Nahverkehrsplans etwas höhere Anteile angenommen wurden. Wie Tabelle 7.2 zeigt, ist zwischen 2015 und 2020 mit einer massiven Zunahme von Euro-6-Fahrzeugen zu rechnen:

Tabelle 7.2: Anteile der Fahrzeuge mit dem Abgasstandard Euro 6 in den einzelnen Fahrzeugkategorien (Pkw bis Reisebusse: Werte aus HBEFA 3.1; Linienbusse: Berliner Entwicklung, HBEFA-Werte in Klammern)

<table>
<thead>
<tr>
<th>Kfz-Art</th>
<th>Fahrzeugkategorie</th>
<th>Otto-Pkw</th>
<th>Diesel-Pkw</th>
<th>leichte Nutzfahrzeuge</th>
<th>schwere Nutzfahrzeuge</th>
<th>Reisebusse</th>
<th>Linienbusse</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td>4 %</td>
<td>8 %</td>
<td>2 %</td>
<td>28 %</td>
<td>14,5 %</td>
<td>27 % (18 %)</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td>21 %</td>
<td>32 %</td>
<td>47 %</td>
<td>75 %</td>
<td>50 %</td>
<td>65 % (57 %)</td>
</tr>
</tbody>
</table>

Die Anteile von Fahrzeugen mit dem Abgasstandard Euro 3 (ohne Filter) und schlechter sind in Berlin aufgrund der Umweltzone sehr viel niedriger als im HBEFA. Eineinheitlich ist dagegen der Anteil von Dieselfahrzeugen mit Partikelfiltern. Fahrzeuge mit dem Abgasstandard Euro 3 und Filter treten in Berlin sehr viel häufiger auf. Bei Euro-4-Fahrzeugen ergibt sich auf der Grundlage der Kennzeichenauswertung zwar eine niedrigere Filterausstattung, was aber z.T. auch auf den unvollständigen Daten der Zulassungsdatenbank beruht. Es kann davon ausgegangen werden, dass der Anteil mit DPF auch in Berlin höher sein wird, so dass die getroffenen Annahmen eine konservative Abschätzung sind.

7.3 Entwicklung der Emissionen aus Berliner Quellen

 Aufgrund der geltenden gesetzlichen Regelungen sind für die meisten innerstädtischen Quellen keine größeren Veränderungen zu erwarten. Insgesamt sind daher bis 2015 nur geringe Abnahmen der Emissionen zu erwarten.

Die größten Reduktionen ergeben sich für die Abgasemissionen des Kfz-Verkehrs mit 22 % weniger Stickoxiden und 45 % weniger Partikeln (Dieselruß). Diese Abnahmen resultieren überwiegend aus der Stufe 2 der Umweltzone, die bereits 2010 zu einem Modernisierungsschub führte.

<table>
<thead>
<tr>
<th>Komponente</th>
<th>2009</th>
<th>Emissionen in t/a</th>
<th>Trend 2015</th>
<th>Trend 2020</th>
<th>Emissionen in t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickoxide</td>
<td>18,619</td>
<td>16,620</td>
<td>13,006</td>
<td>-11 %</td>
<td>-30 %</td>
</tr>
<tr>
<td>genehmigungsbedürftige Anlagen</td>
<td>6,594</td>
<td>6,400</td>
<td>6,300</td>
<td>-3 %</td>
<td>-4 %</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>2,807</td>
<td>2,739</td>
<td>1,595</td>
<td>-2 %</td>
<td>-43 %</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>127</td>
<td>124</td>
<td>120</td>
<td>-2 %</td>
<td>-6 %</td>
</tr>
<tr>
<td>Verkehr (nur Kfz)</td>
<td>7,510</td>
<td>5,822</td>
<td>3,491</td>
<td>-22 %</td>
<td>-54 %</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td>641</td>
<td>635</td>
<td>630</td>
<td>-1 %</td>
<td>-2 %</td>
</tr>
<tr>
<td>sonstige Quellen</td>
<td>940</td>
<td>900</td>
<td>870</td>
<td>-4 %</td>
<td>-7 %</td>
</tr>
<tr>
<td>Feinstaub (PM_{10})</td>
<td>3,125</td>
<td>2,993</td>
<td>2,778</td>
<td>-4 %</td>
<td>-11 %</td>
</tr>
<tr>
<td>genehmigungsbedürftige Anlagen</td>
<td>153</td>
<td>150</td>
<td>145</td>
<td>-2 %</td>
<td>-5 %</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>95</td>
<td>90</td>
<td>84</td>
<td>-5 %</td>
<td>-12 %</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>258</td>
<td>250</td>
<td>240</td>
<td>-3 %</td>
<td>-7 %</td>
</tr>
<tr>
<td>Verkehr (nur Kfz, Auspuff)</td>
<td>225</td>
<td>124</td>
<td>60</td>
<td>-45 %</td>
<td>-73 %</td>
</tr>
<tr>
<td>Abrieb und Aufwirbelung durch Kfz-Verkehr</td>
<td>669</td>
<td>692</td>
<td>631</td>
<td>3 %</td>
<td>-6 %</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td>119</td>
<td>119</td>
<td>118</td>
<td>0 %</td>
<td>-1 %</td>
</tr>
<tr>
<td>sonstige Quellen</td>
<td>1,606</td>
<td>1,568</td>
<td>1,500</td>
<td>-2 %</td>
<td>-7 %</td>
</tr>
<tr>
<td>Feinstaub (PM_{2,5})</td>
<td>1,828</td>
<td>1,707</td>
<td>1,563</td>
<td>-7 %</td>
<td>-15 %</td>
</tr>
<tr>
<td>genehmigungsbedürftige Anlagen</td>
<td>89</td>
<td>87</td>
<td>84</td>
<td>-2 %</td>
<td>-6 %</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>86</td>
<td>81</td>
<td>76</td>
<td>-5 %</td>
<td>-11 %</td>
</tr>
<tr>
<td>Kleingewerbe</td>
<td>197</td>
<td>190</td>
<td>185</td>
<td>-4 %</td>
<td>-6 %</td>
</tr>
<tr>
<td>Verkehr (nur Kfz, Auspuff)</td>
<td>225</td>
<td>124</td>
<td>60</td>
<td>-45 %</td>
<td>-73 %</td>
</tr>
<tr>
<td>Abrieb und Aufwirbelung durch Kfz-Verkehr</td>
<td>360</td>
<td>374</td>
<td>341</td>
<td>4 %</td>
<td>-5 %</td>
</tr>
<tr>
<td>Verkehr (sonstiger)</td>
<td>69</td>
<td>68</td>
<td>67</td>
<td>-1 %</td>
<td>-3 %</td>
</tr>
<tr>
<td>sonstige Quellen</td>
<td>803</td>
<td>784</td>
<td>750</td>
<td>-2 %</td>
<td>-7 %</td>
</tr>
</tbody>
</table>
7.4 Immissionsprognose für den städtischen Hintergrund und an Straßen

7.4.1 Prognose der NO\(_2\)-Immission für 2015 und 2020

Die berechnete NO\(_2\)-Konzentrationsverteilung im städtischen Hintergrund ist in Form von Ras-terkarten in Abbildung 7.1 und Abbildung 7.2 dargestellt.

Im Vergleich zum Basisjahr 2009 geht die NO\(_2\)-Konzentration im gesamten Stadtgebiet stark zurück. Rasterflächen mit Werten über 25 µg/m\(^3\) treten 2015 nicht mehr auf und auch Werte zwischen 22 und 25 µg/m\(^3\) werden nur noch vereinzelt erreicht, während im Jahr 2009 noch große Teile der Innenstadt davon betroffen waren. Bis zum Jahr 2020 sinkt die Belastung so stark, dass überall in der Stadt die NO\(_2\)-Konzentrationen abseits von Hauptverkehrsstraßen unter 18 µg/m\(^3\), in großen Teilen der Stadt sogar unter 14 µg/m\(^3\) liegen.

Die Immissionskonzentration im Hauptverkehrsstraßennetz wurde mit IMMISmodelliert und ist in den Abbildung 7.3 und Abbildung 7.4 dargestellt.

Die Anzahl der Abschnitte mit Grenzwertüberschreitungen geht im Jahr 2015 gegenüber 2009 um 77 % auf 98 Abschnitte zurück, bezogen auf die Länge beträgt der Rückgang 76 % und auf die Betroffenenanzahl 74 %. Damit werden im Jahr 2015 voraussichtlich noch an 12,8 km des Hauptverkehrsstraßennetzes mit etwa 11.400 Anwohnerinnen und Anwohnern Überschreitungen des NO\(_2\)-Jahresgrenzwertes auftreten. Belastungen über 60 µg/m\(^3\) werden nicht mehr vorausgesagt. Die Abschnitte mit potenziellen Grenzwertüberschreitungen konzentrieren sich auf den Bereich innerhalb des S-Bahnringes mit zusätzlichen Hot-Spots an südlichen Radialen und vereinzelten Problemen im Westen und im Südosten (s. Abbildung 7.3). Von den Abschnitten mit NO\(_2\)-Jahresmittelwerten über 40 µg/m\(^3\) weisen 2 Abschnitte keine Überschreitung des PM\(_{10}\)-Jahresmittelwertes von 30 µg/m\(^3\) auf. Es handelt sich dabei um zwei Abschnitte auf der A100. In beiden Fällen liegt der modellierte NO\(_2\)-Jahresmittelwert mit 41,4 und 40,1 µg/m\(^3\) knapp über dem Grenzwert, während die PM\(_{10}\)-Jahresmittelwerte bei 28,1 µg/m\(^3\) liegen.

Für das Jahr 2020 führt der dann erreichte Anteil von Fahrzeugen mit dem Abgasstandard Euro 6 dazu, dass der NO\(_2\)-Jahresgrenzwert von 40 µg/m\(^3\) an allen Hauptverkehrsstraßen eingehalten werden kann (s. Abbildung 7.4). Unter Berücksichtigung eines Modellfehlers von 10 % (36 µg/m\(^3\)) ist für 6 Abschnitte und eines Fehlers von 20 % (32 µg/m\(^3\)) für 15 Abschnitte eine Grenzwertüberschreitung möglich.

Für 21 ausgewählte Abschnitte mit prognostizierten NO\(_2\)-Grenzwertüberschreitungen im Jahr 2015 wurden die Verursacheranteile der einzelnen Kfz-Arten an der Zusatzbelastung im Straßenraum sowie die Minderungslücke für die Einhaltung der Grenzwerte bestimmt. Die Auswahl der 21 Abschnitte setzt sich aus je sieben Abschnitten mit den höchsten, mit mittleren Überschreitungen sowie mit Überschreitungen bis zu 3 µg/m\(^3\) zusammen. Diese Auswahl ist in Tabelle 7.4 aufgeführt und in Abbildung 7.5 kartographisch dargestellt. Zur Charakterisierung der Verkehrsbelastung der einzelnen Abschnitte wurde die im Jahresmittel unter Berücksichtigung des Verkehrs an Wochenenden und Feiertagen in dem Abschnitt fahrende Zahl aller Fahrzeuge, d.h. der durchschnittliche tägliche Verkehr (DTV) angegeben. Außerdem enthält die Tabelle für jeden Abschnitt den Anteil der schweren Nutzfahrzeuge, d.h. Lkw über 3,5 t zulässig Gesamtgewicht, und den Anteil von Bussen, da diese Fahrzeuge einen besonders hohen spezifischen Schadstoffausstoß aufweisen. Der Anteil der leichten Nutzfahrzeuge, d.h. aller Nutzfahrzeugen mit einem zulässigem Gesamtgewicht unter 3,5 t, liegt zwischen 6,9 und 8,4 % bei einem mittleren Anteil von etwa 7,5 %. Dabei werden höhere Anteile leichter Nutzfahrzeuge an Abschnitten mit ebenfalls höheren Anteilen schwerer Nutzfahrzeuge beobachtet.
Abbildung 7.1: Städtische Hintergrundkonzentration für NO\textsubscript{2} im Jahr 2015
Jahresmittelwert der berechneten Gesamtvorbelastung Stickstoffdioxid NO\textsubscript{2} in μg/m3
Trendsszenario 2015

Abbildung 7.2: Städtische Hintergrundkonzentration für NO\textsubscript{2} im Jahr 2020
Jahresmittelwert der berechneten Gesamtvorbelastung Stickstoffdioxid NO\textsubscript{2} in μg/m3
Trendsszenario 2020
Abbildung 7.3: NO\textsubscript{2}-Jahresmittelwerte im Hauptstraßennetz im Jahr 2015

Jahresmittelwert NO\textsubscript{2} in μg/m3
Trendszenario 2015
Maßrahmenbündel 1, Fahrzeugtechnik

- 10 bis unter 38
- 38 bis unter 40
- 40 bis unter 42
- 42 bis unter 44
- 44 bis unter 60
- über 60

Umweltzone: Grenzwert NO\textsubscript{2}: 40 μg/m3

Abbildung 7.4: NO\textsubscript{2}-Jahresmittelwerte im Hauptstraßennetz im Jahr 2020

Jahresmittelwert NO\textsubscript{2} in μg/m3
Trendszenario 2020

- 10 bis unter 38
- 38 bis unter 40
- 40 bis unter 42
- 42 bis unter 44
- 44 bis unter 60
- über 60

Umweltzone: Grenzwert NO\textsubscript{2}: 40 μg/m3
<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>DTV [Kfz/d]</th>
<th>SNfz [%]</th>
<th>BUS [%]</th>
<th>NO$_2$ gesamt [µg/m³]</th>
<th>NO$_2$-Beitrag lokaler Verkehr [µg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7288</td>
<td>Potsdamer Straße</td>
<td>35.360</td>
<td>3,5</td>
<td>3,2</td>
<td>58</td>
<td>36</td>
</tr>
<tr>
<td>10909</td>
<td>A100 (nur Fahrrichtung Nord)</td>
<td>83.216</td>
<td>6,6</td>
<td>0,3</td>
<td>55</td>
<td>33</td>
</tr>
<tr>
<td>7809</td>
<td>Friedrichstraße</td>
<td>14.822</td>
<td>3,4</td>
<td>1,7</td>
<td>53</td>
<td>32</td>
</tr>
<tr>
<td>2046</td>
<td>Wilhelmstraße</td>
<td>19.211</td>
<td>2,3</td>
<td>4,7</td>
<td>52</td>
<td>30</td>
</tr>
<tr>
<td>1982</td>
<td>Dorotheenstraße</td>
<td>14.612</td>
<td>0,3</td>
<td>4,8</td>
<td>51</td>
<td>27</td>
</tr>
<tr>
<td>1617</td>
<td>Potsdamer Straße</td>
<td>35.030</td>
<td>2,3</td>
<td>2,4</td>
<td>51</td>
<td>29</td>
</tr>
<tr>
<td>7861</td>
<td>Leipziger Straße</td>
<td>36.691</td>
<td>2,6</td>
<td>1,7</td>
<td>49</td>
<td>29</td>
</tr>
<tr>
<td>7053</td>
<td>Mariendorfer Damm</td>
<td>42.155</td>
<td>3,4</td>
<td>0,5</td>
<td>47</td>
<td>29</td>
</tr>
<tr>
<td>8942</td>
<td>Elsenstraße</td>
<td>26.003</td>
<td>3,9</td>
<td>2,6</td>
<td>46</td>
<td>28</td>
</tr>
<tr>
<td>2037</td>
<td>Leipziger Straße</td>
<td>34.058</td>
<td>2,5</td>
<td>1,9</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>974</td>
<td>Alt-Moabit</td>
<td>29.102</td>
<td>3,4</td>
<td>0,6</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>7283</td>
<td>Kolonnenstraße</td>
<td>18.527</td>
<td>1,9</td>
<td>3,0</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>8889</td>
<td>Karl-Marx-Straße</td>
<td>24.659</td>
<td>2,5</td>
<td>0,7</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>1606</td>
<td>Hauptstraße</td>
<td>30.379</td>
<td>2,9</td>
<td>3,7</td>
<td>44</td>
<td>22</td>
</tr>
<tr>
<td>9208</td>
<td>Frankfurter Allee</td>
<td>53.026</td>
<td>2,4</td>
<td>0,7</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>7806</td>
<td>Französische Straße</td>
<td>17.227</td>
<td>3,8</td>
<td>1,3</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>2040</td>
<td>Glinkastraße</td>
<td>17.343</td>
<td>4,6</td>
<td>0,5</td>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>7605</td>
<td>Karl-Marx-Straße</td>
<td>27.662</td>
<td>2,5</td>
<td>1,9</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>8902</td>
<td>Schlesische Straße</td>
<td>20.867</td>
<td>3,3</td>
<td>1,9</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>6318</td>
<td>Budapester Straße</td>
<td>45.841</td>
<td>1,8</td>
<td>1,4</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>7061</td>
<td>Tempelhofer Damm</td>
<td>37.129</td>
<td>3,5</td>
<td>0,1</td>
<td>42</td>
<td>23</td>
</tr>
</tbody>
</table>
Die Zusatzbelastung durch den lokalen Verkehr verursacht in den ausgewählten Abschnitten zwischen 48 und 62 % der gesamten NO₂-Konzentration an diesen Straßen, mit einem Mittelwert von 56 %. Die höheren Verkehrsanteile treten tendenziell in den höher belasteten Abschnitten auf.

Die mittleren Anteile der einzelnen Fahrzeugarten an der Zusatzbelastung sind in Tabelle 7.5 zusammengefasst. Gut die Hälfte stammt vom Pkw-Verkehr. Dies ist bedingt durch die zahlenmäßige Dominanz der Pkw, zu denen etwa 85 % der in diesen Straßen fahrenden Fahrzeuge gehören. An zweiter Stelle steht der Beitrag der Lkw über 3,5 t Gesamtgewicht (schwere Nutzfahrzeuge – SNfz) mit 17 %. Reisebusse haben im Mittel mit knapp 7 % den kleinsten Beitrag, wenn der Anteil der Motorräder von 0,1 bis 0,2 % unberücksichtigt bleibt. Der Anteil einzelner Fahrzeugarten kann erheblich schwanken, da lokal große Unterschiede am Verkehrsaufkommen (s. Tabelle 7.4) auftreten. Daher wurden in Tabelle 7.5 auch die minimalen und maximalen Anteile und die betroffenen Straßen mit aufgeführt (alle Einzelergebnisse im Anhang Abbildung A-1). Es ist zu erkennen, dass die Anteile lokal stark von der Lage und der Funktion der Straße geprägt sind. So weist die A100 die höchsten Beiträge durch leichte und schwere Nutzfahrzeuge auf. Ganz anders ist die Situation im touristischen Zentrum der Stadt in Straßen mit starkem Linienbus- und Reisebusverkehr. So verursachen Busse insgesamt in der Dorotheenstraße 42,5 % der NO₂-Zusatzbelastung (Pkw 46,7 %). In der Wilhelmstraße liegt der Anteil der Busse zusammen bei 41 % und der Pkw-Anteil bei 40 %. Damit sind in diesem Straßenabschnitt die Busse die wichtigste NO₂-Quelle. Derartige Unterschiede geben Hinweise für die Maßnahmenplanung.
Tabelle 7.5: Anteile der Fahrzeugarten an der verkehrsbedingten NO\textsubscript{2}-Zusatzbelastung in % im Mittel über alle Hot-Spots sowie die minimalen und maximalen Anteile je Fahrzeugart für 2015

<table>
<thead>
<tr>
<th></th>
<th>Pkw</th>
<th>LNfz</th>
<th>SNfz</th>
<th>Linienbus</th>
<th>Reisebus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>52,5 %</td>
<td>11,8 %</td>
<td>16,7 %</td>
<td>12,4 %</td>
<td>6,6 %</td>
</tr>
<tr>
<td>Minimum</td>
<td>39,8 %</td>
<td>9,2 %</td>
<td>1,4 %</td>
<td>< 1 %</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Ort</td>
<td>Wilhelmstraße</td>
<td>Wilhelmstraße</td>
<td>Dorotheenstraße</td>
<td>Tempelhofer Damm</td>
<td>Tempelhofer Damm und A100</td>
</tr>
<tr>
<td>Maximum</td>
<td>61,9 %</td>
<td>16,7 %</td>
<td>30,8 %</td>
<td>27,9 %</td>
<td>14,6 %</td>
</tr>
<tr>
<td>Ort</td>
<td>Tempelhofer Damm</td>
<td>A100 (Richtung Nord)</td>
<td>A100 (Richtung Nord)</td>
<td>Dorotheenstraße</td>
<td>Dorotheenstraße</td>
</tr>
</tbody>
</table>

Für die ausgewählten Hot-Spots wurde in einer Modellrechnung untersucht, in welcher Größenordnung Emissionsminderungen für Stickoxide, hier simuliert durch DTV-Absenkung, notwendig wären, um die Grenzwerte im Jahr 2015 einhalten zu können. In Abhängigkeit von der Höhe der Überschreitung sind Emissionsminderungen von 9 % bis hin zu 54 % für den Straßenabschnitt mit der höchsten NO\textsubscript{2}-Belastung in der Potsdamer Straße (ID 7288) notwendig. Für die Abschnitte mit Überschreitungen bis etwa 3 µg/m3 reichen im Mittel Emissionsminderungen von 11 %. Dies ist mit Maßnahmen der Verkehrslenkung und moderaten technischen Verbesserungen der Flotte grundsätzlich möglich. Für die Abschnitte mit Überschreitungen des Jahresgrenzwertes um 4 bis 7 µg/m3 sind mit 21 % fast doppelt so hohe Emissionsminderungen erforderlich, die in der Praxis nur bedingt erreichbar sind. Für die am höchsten belasteten Abschnitte müssten 36 bis 54 % der NO\textsubscript{2}-Emissionen vermieden werden. Dies ist mit Maßnahmen des Verkehrsmanagements nicht darstellbar, sondern erfordert entsprechend umfassende technische Verbesserungen in der Fahrzeugflotte, z.B. durch eine hohe Quote von Fahrzeugen mit dem Abgasstandard Euro 6. Im Rahmen der Trendentwicklung wird ein ausreichender Anteil aber erst für 2020 prognostiziert, da erst mehrere Jahre nach Inkrafttreten eines Abgasstandards für Kraftfahrzeuge auch eine ausreichend hohe Durchdringung der Flotte erreicht wird.
7.4.2 Prognose der PM$_{10}$-Immission für 2015 und 2020

In Abbildung 7.6 und Abbildung 7.7 ist die räumliche Verteilung der PM$_{10}$-Feinstaubkonzentrationen im städtischen Hintergrund dargestellt. Wie für NO$_2$ werden auch für Feinstaub in den Jahren 2015 und 2020 niedrigere Konzentrationen prognostiziert. So steigt der Anteil der Gebiete mit PM$_{10}$-Konzentrationen unter 22 µg/m3 während Flächen mit Konzentrationen über 26 µg/m3 deutlich zurückgehen und nur noch vereinzelt auftreten. Weiterhin sind aber die PM$_{10}$-Konzentrationen in der Innenstadt im Jahr 2015 mit 24 bis 26 µg/m3 auf einem hohen Niveau.

Im Jahr 2020 sinkt die Feinstaubbelastung soweit, dass im städtischen Hintergrund im Mittel keine Konzentrationen über 26 µg/m3 auftreten und auch Werte von 25 bis 26 µg/m3 treten nur sehr vereinzelt auf. Im städtischen Hintergrund werden in den meisten Gebieten voraussichtlich Konzentrationen unter 24 µg/m3 erreicht.

Die Immissionskonzentration im Hauptverkehrsstraßennetz ist in den Abbildung 7.8 und Abbildung 7.9 dargestellt. Es zeigt sich, dass bei PM$_{10}$ der Rückgang der Belastungssituation nicht so stark wie bei NO$_2$ ist. Ursachen hierfür sind die hohe Abhängigkeit von der regionalen Vorbelastung, für die nur eine Reduktion von unter 1 µg/m3 prognostiziert wird und der hohe Anteil von Partikeln aus Abrieb und Aufwirbelung in der verkehrsbedingten Zusatzbelastung, der durch Flottenenerneuerung nicht gemindert wird.

Im Jahr 2015 gehen die Abschnitte mit Werten oberhalb des zum Tagesgrenzwert korrespondierenden Jahresmittelwerts von 30 µg/m3 nur um gut 30 % von 563 auf 373 Abschnitte zurück. Diese Abschnitte liegen flächenhaft verteilt vor allem innerhalb des S-Bahnringes (s. Abbildung 7.8). Damit werden im Jahr 2015 voraussichtlich noch an 52,1 km des Hauptverkehrsstraßennetzes mit ca. 43.600 Anwohnerinnen und Anwohnern Überschreitungen des PM$_{10}$-Grenzwertes auftreten. Jahresmittelwerte über 32 µg/m3 wurden für 15,9 km Straßen mit etwa 14.000 Betroffenen prognostiziert. Belastungen über 40 µg/m3 im Jahresmittel werden nicht mehr vorausgesagt.

Auch für die Feinstaubbelastung an Hauptverkehrsstraßen wurden die Anteile der Fahrzeugarten an der verkehrsbedingten Zusatzbelastung für die bereits in Kapitel 7.4.1 beschriebenen 21 Straßenabschnitte berechnet. Die berechneten PM$_{10}$-Konzentrationen und der Dieselrufbeitrag des lokalen Verkehrs sind in Tabelle 7.6 zusammengestellt. Der PM$_{10}$-Beitrag des Verkehrs umfasst dabei sowohl Rußpartikel als auch Partikel aus Aufwirbelung und Abrieb.
Abbildung 7.8: PM\textsubscript{10} Jahresmittelwerte im Hauptstraßennetz im Jahr 2015

Jahresmittelwert PM\textsubscript{10} in μg/m3

<table>
<thead>
<tr>
<th>Trendsgenzenario 2015</th>
<th>unter 28</th>
<th>28 bis unter 30</th>
<th>30 bis unter 32</th>
<th>32 bis unter 34</th>
<th>34 bis unter 40</th>
<th>über 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umweltzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grenzwert PM\textsubscript{10}: 40 μg/m3 (Überschreitung des 24h-Grenzwertes ab ca. 30 μg/m3 zu erwarten)

Abbildung 7.9: PM\textsubscript{10} Jahresmittelwerte im Hauptstraßennetz im Jahr 2020

Jahresmittelwert PM\textsubscript{10} in μg/m3

<table>
<thead>
<tr>
<th>Trendsgenzenario 2020</th>
<th>unter 28</th>
<th>28 bis unter 30</th>
<th>30 bis unter 32</th>
<th>32 bis unter 34</th>
<th>34 bis unter 40</th>
<th>über 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umweltzone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grenzwert PM\textsubscript{10}: 40 μg/m3 (Überschreitung des 24h-Grenzwertes ab ca. 30 μg/m3 zu erwarten)
Tabelle 7.6: PM$_{10}$ und Dieselrußkonzentrationen an ausgewählten Straßenabschnitten für 2015

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>DTV</th>
<th>PM$_{10}$ gesamt [µg/m³]</th>
<th>PM$_{10}$ Beitrag Verkehr [µg/m³]</th>
<th>Dieselruß [µg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7288</td>
<td>Potsdamer Straße</td>
<td>35.360</td>
<td>40</td>
<td>14</td>
<td>1,6</td>
</tr>
<tr>
<td>10909</td>
<td>A100 (Fahrtrichtung Nord)</td>
<td>83.216</td>
<td>31</td>
<td>6</td>
<td>1,4</td>
</tr>
<tr>
<td>7809</td>
<td>Friedrichstraße</td>
<td>14.822</td>
<td>38</td>
<td>13</td>
<td>1,7</td>
</tr>
<tr>
<td>2046</td>
<td>Wilhelmstraße</td>
<td>19.211</td>
<td>36</td>
<td>11</td>
<td>1,3</td>
</tr>
<tr>
<td>1983</td>
<td>Dorotheenstraße</td>
<td>14.612</td>
<td>34</td>
<td>9</td>
<td>1,2</td>
</tr>
<tr>
<td>1617</td>
<td>Potsdamer Straße</td>
<td>35.030</td>
<td>37</td>
<td>11</td>
<td>1,4</td>
</tr>
<tr>
<td>7861</td>
<td>Leipziger Straße</td>
<td>36.691</td>
<td>37</td>
<td>12</td>
<td>1,4</td>
</tr>
<tr>
<td>7053</td>
<td>Mariendorfer Damm</td>
<td>42.155</td>
<td>35</td>
<td>10</td>
<td>1,6</td>
</tr>
<tr>
<td>8942</td>
<td>Eilenstraße</td>
<td>26.003</td>
<td>36</td>
<td>11</td>
<td>1,2</td>
</tr>
<tr>
<td>2037</td>
<td>Leipziger Straße</td>
<td>34.058</td>
<td>35</td>
<td>10</td>
<td>1,2</td>
</tr>
<tr>
<td>974</td>
<td>Alt-Moabit</td>
<td>29.102</td>
<td>35</td>
<td>10</td>
<td>1,4</td>
</tr>
<tr>
<td>7283</td>
<td>Kolonnenstraße</td>
<td>18.527</td>
<td>34</td>
<td>8</td>
<td>1,1</td>
</tr>
<tr>
<td>8887</td>
<td>Karl-Marx-Straße</td>
<td>24.659</td>
<td>35</td>
<td>10</td>
<td>1,3</td>
</tr>
<tr>
<td>7275</td>
<td>Hauptstraße</td>
<td>30.379</td>
<td>34</td>
<td>8</td>
<td>1,0</td>
</tr>
<tr>
<td>9208</td>
<td>Frankfurter Allee</td>
<td>53.026</td>
<td>33</td>
<td>8</td>
<td>1,4</td>
</tr>
<tr>
<td>7806</td>
<td>Französische Straße</td>
<td>17.227</td>
<td>34</td>
<td>9</td>
<td>1,0</td>
</tr>
<tr>
<td>2040</td>
<td>Glinkastraße</td>
<td>17.343</td>
<td>34</td>
<td>9</td>
<td>1,1</td>
</tr>
<tr>
<td>7605</td>
<td>Karl-Marx-Straße</td>
<td>27.662</td>
<td>34</td>
<td>8</td>
<td>1,1</td>
</tr>
<tr>
<td>8902</td>
<td>Schlesische Straße</td>
<td>20.867</td>
<td>34</td>
<td>9</td>
<td>1,0</td>
</tr>
<tr>
<td>6318</td>
<td>Budapester Straße</td>
<td>45.841</td>
<td>33</td>
<td>8</td>
<td>0,9</td>
</tr>
<tr>
<td>7066</td>
<td>Tempelhofer Damm</td>
<td>37.129</td>
<td>33</td>
<td>8</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Im Mittel über alle Straßenabschnitte verursacht der lokale Verkehr 27 % der gesamten Feinstaubbelastung. Die höchste Zusatzbelastung durch den lokalen Verkehr ergab sich für die Potsdamer Straße mit einem Beitrag von 35 %, den niedrigste Anteil weist der betrachtete Abschnitt der A100 mit 20 % auf.

Die mittleren Anteile der einzelnen Fahrzeugarten an der PM$_{10}$-Zusatzbelastung zeigt Tabelle 7.7. Diese sind vergleichbar mit den lokalen NO$_2$-Beiträgen. Im Mittel stammen fast 60 % vom Pkw-Verkehr. An zweiter Stelle steht wieder der Beitrag der Lkw über 3,5 t Gesamtgewicht (SNfz) mit 19 %. Reisebusse haben im Mittel mit etwa 4 % den kleinsten Beitrag. Der Anteil einzelner Fahrzeugarten kann erheblich schwanken, da lokal große Unterschiede am Verkehrsaufkommen (s. Tabelle 7.4) auftreten. Daher wurden in Tabelle 7.7 auch die minimalen und maximalen Anteile und die betroffenen Straßen mit aufgeführt (alle Einzelergebnisse im Anhang Abbildung A-2). Es ist zu erkennen, dass die Anteile lokal stark von der Lage und der Funktion der Straße geprägt sind. So weist die A100 die höchsten Beiträge durch leichte und schwere Nutzfahrzeuge auf. Ganz anders ist die Situation im touristischen Zentrum der Stadt in Straßen mit starkem Linienbus- und Reisebusverkehr. In der Dorotheenstraße verursachen Busse insgesamt 31,3 % der PM$_{10}$-Zusatzbelastung (Pkw 46,7 %). In der Wilhelmstraße liegt der Anteil der Busse zusammen bei 41 % und der Pkw-Anteil bei 40 %. Der Beitrag der Motorräder zur Feinstaubbelastung liegt unter 0,1 %.

Tabelle 7.7: Anteile der Fahrzeugarten an der verkehrsbedingten PM$_{10}$-Zusatzbelastung in % im Mittel über alle Hot-Spots sowie die minimalen und maximalen Anteile je Fahrzeugart für 2015

<table>
<thead>
<tr>
<th></th>
<th>Pkw</th>
<th>LNfz</th>
<th>SNfz</th>
<th>Linienbus</th>
<th>Reisebus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>59,4 %</td>
<td>9,6 %</td>
<td>19,0 %</td>
<td>7,9 %</td>
<td>4,1 %</td>
</tr>
<tr>
<td>Minimum</td>
<td>51,5 %</td>
<td>8,1 %</td>
<td>1,9 %</td>
<td>< 1 %</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Ort</td>
<td>A100</td>
<td>Wilhelmstraße/ Dorotheenstraße</td>
<td>Tempelhofer Damm</td>
<td>Tempelhofer Damm und A100</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>68,2 %</td>
<td>11,3 %</td>
<td>35,6 %</td>
<td>20,6 %</td>
<td>10,7 %</td>
</tr>
<tr>
<td>Ort</td>
<td>Budapester Straße (Richtung Nord)</td>
<td>A100 (Richtung Nord)</td>
<td>Dorotheenstraße</td>
<td>Dorotheenstraße</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 7.8: Anteile der Fahrzeugarten an der verkehrsbedingten Ruß-Zusatzbelastung in % im Mittel über alle Hot-Spots sowie die minimalen und maximalen Anteile je Fahrzeugart für 2015

<table>
<thead>
<tr>
<th></th>
<th>Pkw</th>
<th>LNfz</th>
<th>SNfz</th>
<th>Linienbus</th>
<th>Reisebus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>46 %</td>
<td>35 %</td>
<td>10 %</td>
<td>2 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Minimum</td>
<td>40,6 %</td>
<td>31,7 %</td>
<td>1,0 %</td>
<td>0,1 %</td>
<td>0,4 %</td>
</tr>
<tr>
<td>Ort</td>
<td>Wilhelmstraße</td>
<td>A100</td>
<td>Dorotheenstraße</td>
<td>Tempelhofer Damm</td>
<td>Tempelhofer Damm</td>
</tr>
<tr>
<td>Maximum</td>
<td>50,3 %</td>
<td>38,4 %</td>
<td>24,7 %</td>
<td>4,4 %</td>
<td>16,9 %</td>
</tr>
<tr>
<td>Ort</td>
<td>Budapester Straße</td>
<td>Glinkastraße</td>
<td>A100</td>
<td>Dorotheenstraße</td>
<td>Dorotheenstraße</td>
</tr>
</tbody>
</table>

Die Analyse der notwendigen Emissionsminderung zur Einhaltung des PM$_{10}$-Grenzwertes allein durch verkehrliche Maßnahmen ergab, dass die Emissionen um 38 % (Tempelhofer Damm) bis 70 % (Potsdamer Straße) reduziert werden müssten. Da der größte Teil der verkehrsbedingten Partikel aus Abrieb und Aufwirbelung stammt, wären Minderungen weni- ger durch technische Maßnahmen am Fahrzeug, sondern vielmehr durch niedrigere Geschwindigkeiten und Reduzierung der Verkehrsmenge möglich. Andererseits wird schon etwa die Hälfte der Feinstaubbelastung durch Quellen außerhalb Berlins verursacht, so dass es nicht verursachergerecht wäre, allein durch überproportionale Emissionsminderung im Berliner Straßenverkehr eine Einhaltung der Grenzwerte anzustreben. Die auch im Jahr 2015 und 2020 noch bestehende hohe PM$_{10}$-Hintergrundbelastung außerhalb Berlins muss ebenfalls wirksamer gesenkt werden.
8 Szenarienrechnungen zur Wirkung ausgewählter Maßnahmen

8.1 Definition der Maßnahmen
Die folgende Tabelle 8.1 gibt einen Überblick über die betrachteten Maßnahmenbündel und die darin enthaltenen Einzelmaßnahmen.

<table>
<thead>
<tr>
<th>Maßnahmenbündel</th>
<th>enthaltene Einzelmaßnahmen</th>
</tr>
</thead>
</table>
| MB 1 Fahrzeugtechnik | • Umweltzone ohne Einzelausnahmen
• höherer Anteil von Euro-6-Fahrzeugen
• Förderung von Elektrofahrzeugen
• Nachrüstung von Euro-4-Fahrzeugen mit Partikelfiltern (Pkw und Lkw) und Entstielungsanlagen (nur Lkw)
• Nachrüstung von Fahrgastschiffen mit Partikelfiltern |
| MB 2 Verkehrsflussoptimierung | Reduzierung der Stausituationen durch:
• Lichtsignalkoordinierung
• Zuflussdosierung
• Tempo 30 |
| MB 3 T30 an Hotspots | |
| MB 4 Emissionsminderung im städtischen Hintergrund | • Verbot von Festbrennstoffen für Heizungen/Öfen
• Partikelfilter für Baumaschinen |
| MB 5 Vorgezogene Flotte 2020 | |

Für die Modellierung wurden dabei die im Folgenden beschriebenen Annahmen getroffen.

8.1.1 Annahmen für das Maßnahmenbündel 1: Fahrzeugtechnik

Für Elektrofahrzeuge wurde für das Jahr 2015 ein Anteil von 1,2 % an der Gesamtfahrleistung angenommen. Dazu wurden bei der Modellierung jeweils 2,5 % der Fahrleistung von Diesel-Pkw sowie Nutzfahrzeugen der Abgasstandards Euro 4 und 5 durch Elektrofahrzeuge ersetzt. Hierbei handelt es sich um ein sehr optimistisches Szenario, das nur erreichbar ist, wenn die Entwicklung von Elektrofahrzeugen dynamisch verläuft und schnell konkurrenzfähige Fahrzeuge auf den Markt gebracht werden.

Für die Umweltzone mussten bisher nur Dieselfahrzeuge bis zum Abgasstandard Euro 3 mit Partikelfiltern nachgerüstet werden. Im Jahr 2015 stammen jedoch auch noch erhebliche Anteile der Schadstoffemissionen aus Euro-4-Dieselfahrzeugen ohne Partikelfilter. Neben Nachrüstsystemen zur Partikelminderung werden zumindest für Lkw zunehmend auch Systeme zur Reduzierung der Stickoxidemissionen entwickelt und eingebaut. Für leichte Nutzfahrzeuge und Pkw wurden dagegen bisher keine Stickoxidminderungs systeme für die Nachrüstung entwickelt. Dies ist aufgrund des hohen technologischen Aufwands und der damit verbundenen Kosten auch nicht zu erwarten. Für das Szenario wurden folgende Annahmen für die Nachrüstung von Euro-4-Dieselfahrzeugen, die bisher nicht mit abgasseitigen Minderungssystemen ausgerüstet sind, getroffen:

- Nachrüstquoten: innerhalb der Umweltzone 80 %, außerhalb 50 %
- Emissionsminderung:
 - für schwere Nutzfahrzeuge: 50 % weniger Dieselrußpartikel und Stickoxide,
 - für Pkw und leichte Nutzfahrzeuge: 50 % weniger Dieselrußpartikel

Darüber hinaus wurde die Nachrüstung von Fahrgastschiffen mit Partikelfiltern in das Maßnahmenbündel aufgenommen. Angenommen wurde eine Minderung der Dieselrußemissionen der Fahrgast schifffahrt von 20 % innerhalb der Umweltzone und 10 % außerhalb.

8.1.2 Annahmen für das Maßnahmenbündel 2: Verkehrsflussoptimierung

Im tatsächlichen Verkehrsgeschehen lässt sich dieser Idealzustand allerdings nur bei optimalen Randbedingungen erreichen. Notwendig sind geeignete Abstände der Kreuzungen,

8.1.3 Annahmen für das Maßnahmenbündel 3: Tempo 30 an Hot-Spots
Mit der Reduzierung der Höchstgeschwindigkeit auf 30 km/h können, wie in Kapitel 6.8 dargestellt, Luftschadstoffemissionen reduziert werden, wenn ein weitgehend flüssiger Verkehr und eine Kontrolle der Geschwindigkeitsbegrenzung gegeben ist. In einer Modellrechnung wurde daher für alle Straßenabschnitte, an denen Grenzwertüberschreitungen (PM10 und/oder NO2) auftreten, Tempo 30 angenommen und der Stauanteil auf Null gesetzt. Es handelt sich dabei um 375 Abschnitte mit einer Länge von insgesamt 52,3 km. Für die Modellierung wurden die bei den Auswertungen in der Schildhornstraße gefundenen prozentualen Minderungen für den lokalen Zusatzbeitrag des Verkehrs von 30 % Feinstaub und 15 % NO2 angenommen. Vor einer Umsetzung der Maßnahme ist jeweils im Rahmen einer Einzelfallprüfung zu untersuchen, ob geeignete Randbedingungen vorliegen.

8.1.4 Annahmen für das Maßnahmenbündel 4: Emissionsminderung im städtischen Hintergrund

8.1.5 Annahmen für das Maßnahmenbündel 5: vorgezogene Flotte 2020

8.2 Ergebnisse der Emissionsberechnungen
Die mit den beschriebenen verkehrlichen Maßnahmen im Vergleich zum Referenzfall 2015 im gesamten Hauptverkehrsstrassenetz zusätzlich erreichbaren relativen Emissionsminderungen sind für die Kfz-Emissionen in Abbildung 8.1 zusammengefasst. Für die Maßnahmen im Bereich Fahrzeugtechnik ist sowohl die Wirkung in der Summe aller Teilmaßnahmen als Maßnahmenbündel (MB 1) Fahrzeugtechnik dargestellt als auch die Wirkung der Einzelmaßnahmen.
Die größte Wirkung auf die Emissionen des Hauptstraßenverkehrs hat die fiktive Einführung der Flotte 2020 bereits im Jahr 2015 mit Minderungen der Auspuffpartikel von fast 50 % und der Stickoxide um 36 %. Einen bedeutenden Beitrag zur Reduzierung von Auspuffpartikeln von 12 % würde die Filter-Nachrüstung eines großen Teils der dann noch filterlosen Euro-4-Dieselfahrzeuge liefern. Alle anderen Maßnahmen reduzieren die Gesamtemission im Hauptverkehrsstraßennetz um weniger als 5 %. Die zusätzliche Nachrüstung von Euro-4-Lkw mit Entstickungssystemen würde die Stickoxidedemissionen nur um knapp 0,7 % reduzieren. Das ist weniger als z.B. durch die Abschaffung von Ausnahme-regelungen für die Umweltzone erreichbar wäre.

Bei der Bewertung der Maßnahmen, die nicht die Fahrzeugflotte betreffen, sondern gezielt durch Verkehrsmanagementmaßnahmen zu Emissionsminderungen in einzelnen Straßen- abschnitten führen, ist der Effekt auf die Gesamtemissionen nur gering. Tempo 30 führt zu einer Emissionsminderung von 0,5 % NOx und 1,1 % PM10. Mit der Vermeidung aller Staus an hoch belasteten Abschnitten werden die gesamtstädtischen Emissionen sogar nur etwa 0,2 % reduziert. Bei diesen Maßnahmen ist jedoch die Wirkung lokal wesentlich höher. So beträgt die Emissionsminderung für Tempo 30 lokal im betroffenen Straßenabschnitt etwa 30 % PM10, 15 % Dieselpartikel und 15 % NOx bei flüssigem bis dichtem Verkehr. Für die Maßnahme „Verkehrsflussoptimierung“ sinken unter der Annahme, dass gar keine Staus mehr auftreten, die Stickoxid- und PM10-Emissionen im Mittel um etwa 10 %, die Dieselpartikelemissionen um etwa 7 %. Die Spannweite ist mit 0 bis etwa 35 % sehr groß. Allerdings ist bei dieser Emissionsmodellierung zu beachten, dass hier der Idealfall der vollständigen Stauvermeidung angenommen wurde, ohne dass das Verkehrsaufkommen sinkt. Dies ist in der Praxis so kaum umsetzbar, da ein großer Teil des Staus dadurch entsteht, dass das momentane Verkehrsaufkommen schlicht die Kapazität des Straßenabschnitts überschreitet. Ein Stau kann dann nur durch Reduzierung des Verkehrs vermieden werden. Ein solches Szenario wurde für die Frankfurter Allee untersucht. Stauvermeidung und die Reduzierung der täglichen Verkehrsmenge um 10 %, z.B. durch Pförtnerampeln, ergaben die höchsten Emissionsminderungen von bis zu 43 % NOx und PM10 und 34 % Dieselpartikel.

Absolut lassen sich mit den untersuchten Maßnahmen im Straßenverkehr mit besserer Fahrzeugtechnik und Verkehrsmanagementmaßnahmen (MB 1, 2 und 3) in der Summe etwa 230 t/a Stickoxide, 19 t/a Auspuffpartikel und 27 t/a PM10 (Auspuff + Abrieb und Aufwirbelung) vermeiden. Mit der auf das Jahr 2015 vorgezogenen Flottenzusammensetzung des Jahres 2020 ließen sich dagegen 1.687 t/a Stickoxide und 48 t/a Auspuffpartikel vermeiden (Szenario MB 5). Zum Vergleich: Mit der zweiten Stufe der Umweltzone konnten im Jahr 2010 gegenüber der Trendentwicklung ohne Umweltzone 1.517 Tonnen Stickoxide und 173 Tonnen Auspuffpartikel vermieden werden.
Für die Maßnahmen, die sich nicht auf den Kfz-Verkehr beziehen, wurden nur Minderungen für die Partikelemissionen angenommen. Es ergeben sich die in Tabelle 8.3 dargestellten Emissionsminderungen.

Tabelle 8.3: Feinstaubminderung durch Maßnahmen außerhalb des Straßenverkehrs für 2015

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Partikelminderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbot von Festbrennstoffen für Kleinfeuerungsanlagen und Zusatzheizungen</td>
<td>407 t/a</td>
</tr>
<tr>
<td>Partikelfilter für Baumaschinen</td>
<td>105 t/a</td>
</tr>
<tr>
<td>Nachrüstung von Fahrgastschiffen mit Partikelfiltern</td>
<td>0,5 t/a</td>
</tr>
</tbody>
</table>

Die Einführung von Partikelfilter für Baumaschinen würde die Partikelemission um etwa 105 t/a reduzieren, wenn man eine Minderungsrate von durchschnittlich 75 % annimmt. Wie in Abschnitt 4.1.6 dargestellt, besteht hinsichtlich der Emissionen des Baumaschinensektors und damit auch bezüglich des Minderungspotenzials eine beträchtliche Unsicherheit. Selbst wenn nur die dort als untere Grenze angegebene Emissionsmenge von 90 t/a betrachtet wird, beträgt das Reduktionspotenzial infolge der Filtrnachrüstung bei Baumaschinen immerhin fast 70 t/a und damit mehr als das Doppelte der durch die Umweltzone bei schweren Lkw eingesparte Menge emittierter Rußpartikel[88]. Insofern wäre durch eine Rußfilternachrüstung für Baumaschinen eine merkliche Senkung der Belastung an besonders schädlichen Rußpartikeln zu erwarten, die auch zu einer, wenn auch deutlich geringerem Minderung der Feinstaubkonzentration beitragen würde.

8.3 Ergebnisse der Modellierung der Luftqualität

Analog zu den Berechnungen der Gesamtbelastung der Ist-Situation 2009 und der Prognose 2015/2020 wurde die Luftbelastung im Hauptstraßennetz berechnet. Dabei wurden für die Maßnahmenbündel 1, 4 und 5 zuerst die Wirkungen im urbanen Hintergrund bestimmt und damit die Vorbelastung je Straßenabschnitt neu bestimmt. Für die Maßnahmenbündeln 2 und 3, die jeweils nur lokale Maßnahmen an ausgewählten Hotspots beinhalten,
wurde nur die Wirkung auf die lokalen Zusatzbelastung betrachtet und der urbane Hintergrund unverändert aus der Prognose 2015 übernommen.

Die Wirkung der Maßnahmen wird anhand der jeweils prognostizierten Anzahl und Länge der Straßenabschnitte mit Grenzwertüberschreitungen sowie der Zahl der betroffenen Anwohnerinnen und Anwohner beurteilt. Die Ergebnisse sind für NO\textsubscript{2} in Abbildung 8.2 und für Feinstaub (PM\textsubscript{10}) in Abbildung 8.3 sowohl für das Basisjahr 2009, die Trendentwicklung 2015 und 2020 als auch für die verschiedenen Szenarien dargestellt.

Die Wirkung auf einzelne Straßenabschnitte ist im Umweltatlas im Themenbereich Luft abrufbar: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/dinh_03.htm, Karte 03.11.

Wirkung auf die NO\textsubscript{2}-Belastungssituation

Während im Ausgangsjahr 2009 noch an 58 km des Hauptstraßennetzes Überschreitungen des NO\textsubscript{2}-Jahresgrenzwertes mit 47.700 Betroffenen auftraten, sinkt die Betroffenheit schon aufgrund der Trendwicklung bis zum Jahr 2015 um etwa 77 % auf etwa 13 km mit 11.400 Betroffenen. Ein erheblicher Teil dieses Rückganges ist auf die Emissionsminderungen der 2010 eingeführten zweiten Stufe der Umweltzone zurückzuführen. Mit den Maßnahmenbündeln 1 bis 3 können darüber hinaus die belasteten Straßenabschnitte im Vergleich zur Trendentwicklung um gut 40 % auf 6,7 bis 7,7 km mit 6.100 bis 7.100 Betroffenen reduziert werden.

Eine praktisch vollständige Einhaltung des NO\textsubscript{2}-Grenzwertes kann jedoch nur mit einer viel höheren Emissionsminderung erreicht werden, d.h. durch eine umfassende Modernisierung der Fahrzeugflotte mit Anteilen von Diesel-Fahrzeugen des Abgasstandards Euro 6 von 32 (Pkw) bis 75 % (schwere Lkw). Für diesen Fall wird nur noch für einen einzigen Straßenabschnitt von 140 m Länge im Verlauf der Potsdamer Straße eine Überschreitung prognostiziert.

Wirkung auf die PM\textsubscript{10}-Belastungssituation

Für die Beurteilung einer Grenzwertüberschreitung wurde hier ein Jahresmittelwert von 32 µg/m3 herangezogen, bei dem eine Überschreitung des Tagesgrenzwertes mit 90-prozentiger Sicherheit gegeben ist. Wie Abbildung 8.3 zeigt, ist der bis 2015 prognostizierte Rückgang der von PM\textsubscript{10}-Grenzwertüberschreitungen betroffenen Straßenabschnitte sehr viel kleiner als für Überschreitungen des NO\textsubscript{2}-Jahresmittelgrenzwertes. Ursächlich hierfür ist der hohe Anteil der überregionalen PM\textsubscript{10}-Vorbelastung, auf die Berlin keinen Einfluss hat. Aufgrund der Trendentwicklung inklusive Stufe 2 der Umweltzone sinkt die Länge der
belasteten Straßenabschnitte und die Zahl der Betroffenen bis 2015 um etwa 46 %. Anders als bei NO₂ kann auch 2020 der Grenzwert für PM₁₀ nicht an allen Straßen eingehalten werden.

Von den verkehrlichen Maßnahmen führt die Reduzierung der Höchstgeschwindigkeit auf 30 km/h zu der größten Entlastung, die Zahl der von Grenzwertüberschreitungen Betroffenen sinkt gegenüber der Trendentwicklung um mehr als 60 %. Dies liegt daran, dass nicht nur die motorbedingten Partikel reduziert werden, sondern vor allem auch die Partikel- emissions aus Abrieb und Aufwirbelung. Das Maßnahmenbündel zur Modernisierung der Fahrzeugtechnik und die Maßnahmen der Verkehrsflussoptimierung führen zu einem Rückgang der Betroffenen von jeweils etwa 25 %. Bei den verkehrlichen Maßnahmen ließen sich noch die Maßnahmen im Bereich der Fahrzeugtechnik mit den Maßnahmen des Verkehrsmanagements kombinieren und so in der Summe eine etwas höhere Entlastung erreichen.

![Abbildung 8.3: Länge der Straßen mit Überschreitungen des PM₁₀-Grenzwertes (Jahresmittel > 32 µg/m³) und Zahl der betroffenen Anwohnerinnen und Anwohner für die Trendentwicklung und bei Umsetzung der Maßnahmenbündel im Jahr 2015](image)

Beim Vergleich der immissionsseitigen Wirkung der verschiedenen Maßnahmenbündel zeigt sich, dass die nur lokal wirksamen Maßnahmen der Verkehrsflussoptimierung und der angepassten Höchstgeschwindigkeit gut geeignet sind, um gezielt eine Entlastung von hoch belasteten Straßenabschnitten zu erreichen. Die hier aufgezeigten Minderungen zeigen den maximal denkbaren Effekt, wenn die Maßnahme an allen Hotspots mit vollem Effekt umgesetzt würde. So wurde für die Verkehrsflussoptimierung postuliert, dass überhaupt keine Staus auf den betrachteten Straßenabschnitten mehr auftreten, was in der Praxis aus verschiedensten Gründen eine Illusion bleibt. Auch für die Wirkung einer Reduzierung der Höchstgeschwindigkeit wurden optimale Randbedingungen mit einem stetigem Verkehrsfluss angenommen, so dass die postulierte Wirkung in der Praxis nicht sicher erreicht werden kann. Daher sind vor einer Realisierung dieser Maßnahmen weitere Detailmodellierungen für Einzelabschnitte vorgesehen.
9 Maßnahmen des Luftreinhalteplans 2011-2017

Wie die Trendprognosen gezeigt haben, können die Grenzwerte für die Luftqualität ohne zusätzliche Maßnahmen bis 2015 noch nicht eingehalten werden. Aufgabe der Luftreinhalteplanung ist daher die Entwicklung von Maßnahmen, mit denen die Grenzwerte zur Luftqualität – so weit möglich – dauerhaft eingehalten werden können.

Für PM$_{10}$, hat die Ursachenanalyse allerdings gezeigt, dass aufgrund des hohen Beitrags der von außen nach Berlin herein transportierten Partikel lokale Maßnahmen unter Berücksichtigung des Grundsatzes der Verhältnismäßigkeit das Problem der Überschreitung des PM$_{10}$-Kurzzeitgrenzwertes nicht werden lösen können. Lokale Maßnahmen müssen aber zumindest dazu führen, dass die Gefahr der Grenzwertüberschreitung verringert und das Ausmaß der Überschreitung hinsichtlich Höhe und Dauer reduziert wird.

Neben den in Kapitel 8 untersuchten Maßnahmenensemble werden im Folgenden weitere mögliche Maßnahmen zur Reduzierung der Luftbelastung zusammengestellt, die auf Berliner Ebene ergriffen werden können, deren Wirkung aber nicht in gleicher Weise mit den zur Verfügung stehenden Modellen quantifiziert werden kann.

Die Maßnahmen lassen sich fünf Maßnahmenfeldern zuordnen:

- Raum-, Stadt- und Landschaftsplanung
- Verkehr
- Wärmeversorgung
- Bausektor
- Anlagen in Industrie und Gewerbe

Nr.	Maßnahme	Wirkung	Umsetzung und Wir-	Akteure
-----	--	---------	kungseintritt	
			kungseintritt	
M 1.1	Räumliche Planung unter Berücksichtigung der Stadtklimatologie und des Luftaustausches	☀ lokal bis stadtw. +/+	langfristig	SenStadtUm Bezirke
M 1.2	Vermeidung neuer Belastungsschwerpunkte	☀ lokal +	langfristig	SenStadtUm Bezirke
M 1.3	Grün in der Straße	☀ stadtw. ++	langfristig	SenStadtUm Bezirke
M 1.4	Immissionssensitive Entwicklung der Standorte des Stadtentwicklungsplan (StEP) Industrie und Gewerbe	☀ lokal 0/++	langfristig	SenStadtUm Bezirke SenWiTechForsch
M 1.5	Stadtentwicklungsplan (StEP) Zentren	☀ lokal 0/+	langfristig	Bezirke SenStadtUm SenWiTechForsch
M 1.6	Verkehrssparende Raumentwicklung	☀ stadtw. +	langfristig	SenStadtUm Bezirke
M 1.7	Beteiligung bei Verfahren der Bauleitplanung und Planfeststellungen	☀ bezirkl. 0/++	langfristig	Bezirke (TÖB)

Maßnahmen Fahrzeugtechnik

<p>| Nr. | Maßnahme | Wirkung | Umsetzung und Wir- | Akteure |
|-----|--|---------|kungseintritt | |
| | | | kungseintritt | |
| M 2.1 | Umweltzone ohne Einzelausnahmen | ☀ stadtw. + | bis 2015 | SenStadtUm |
| M 2.2 | Förderung von Euro-6-Fahrzeugen | ☀ stadtw. + | bis 2015/16 | SenStadtUm Bund |
| M 2.3 | Förderung von Erdgasfahrzeugen | ☀ stadtw. begrenzt | laufend | SenStadtUm Bund GASAG |
| M 2.4 | Elektromobilität | ☀ stadtw. unklar | mittel- bis langfristig | SenStadtUm SenWiTechForsch Bund Bezirke |
| M 2.5 | Saubere Fahrzeuge im ÖPNV | ☀ stadtw. +/lokal ++ | kurz- bis langfristig | SenStadtUm BVG |
| M 2.6 | Saubere Kommunalfahrzeuge | ☀ stadtw. 0 | kurz- bis mittelfristig | alle komm. Unternehmen |
| M 2.7 | Nachrüstung von Euro-4-Dieselfahrzeugen | ☀ stadtw. + | mittelfristig | SenStadtUm Bund |
| M 2.8 | Partikelminderung für Fahrgastschiffe | ☀ lokal 0/+ | kurz- bis mittelfristig | SenStadtUm Bezirke |
| M 2.9 | Umweltstandards für Diesellokomotiven | ☀ lokal 0/+ | mittel- bis langfristig | SenStadtUm Bund VBB |
| M 2.10 | Kommunikationskampagnen zur Beschaffung sauberer Fahrzeuge | ☀ stadtw. 0 | mittelfristig | SenStadtUm Verbände |</p>
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
<th>Wirkung</th>
<th>Umsetzung und Wirkungseintritt</th>
<th>Akteure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maßnahmen Verkehrslenkung/-organisation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 2.11</td>
<td>Verstetigung</td>
<td>Q nur lokal +/+</td>
<td>kurz- bis mittelfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td>M 2.12</td>
<td>Stadtverträgliche Geschwindigkeit auf Hauptverkehrsstraßen</td>
<td>Q nur lokal +/+</td>
<td>kurz- bis mittelfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td>M 2.13</td>
<td>Umweltsensitive Verkehrssteuerung</td>
<td>Q nur lokal 0/+</td>
<td>mittelfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td>M 2.14</td>
<td>Konzepte bei Ereignissen und Störfällen</td>
<td>Q nur lokal 0/+</td>
<td>mittelfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td>M 2.15</td>
<td>Lenkungskonzepte für Lkw-Durchgangsverkehr</td>
<td>Q lokal bis stadtweit +</td>
<td>mittelfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td>M 2.16</td>
<td>Umweltsensitive Lenkungskonzepte im Zusammenhang mit dem innerstädtischen Verkehr</td>
<td>Q lokal bis stadtweit +</td>
<td>mittelfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td>M 2.17</td>
<td>Neuorganisation von Reisebusverkehren</td>
<td>Q lokal bis stadtweit 0/+</td>
<td>mittelfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td></td>
<td>Maßnahmen Verkehrsverlagerung und -Vermeidung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 2.18</td>
<td>Förderung des ÖPNV</td>
<td>Q stadtweit +/+</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td>M 2.19</td>
<td>Förderung des Fuß- und Radverkehrs</td>
<td>Q stadtweit +/+</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm Bezirke</td>
</tr>
<tr>
<td>M 2.20</td>
<td>Parkraumbewirtschaftung</td>
<td>Q lokal bis stadtweit +</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm Bezirke</td>
</tr>
<tr>
<td>M 2.21</td>
<td>Mobilitätsmanagement</td>
<td>Q lokal bis stadtweit 0/+</td>
<td>mittel- bis langfristig</td>
<td>alle Verwaltungen</td>
</tr>
<tr>
<td>M 2.22</td>
<td>Förderung Carsharing</td>
<td>Q stadtweit 0/+</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm Bezirke</td>
</tr>
<tr>
<td>M 2.23</td>
<td>Integriertes Wirtschaftsverkehrskonzept</td>
<td>Q stadtweit +</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm SenWirtschaft</td>
</tr>
<tr>
<td></td>
<td>Maßnahmen Infrastruktur Verkehr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 2.24</td>
<td>Sanierung von Straßenoberflächen</td>
<td>Q lokal +/+</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm Bezirke</td>
</tr>
<tr>
<td>M 2.25</td>
<td>Neuaufteilung von Straßenräumen</td>
<td>Q lokal +</td>
<td>mittel- bis langfristig</td>
<td>im Rahmen Lärmaktionsplan</td>
</tr>
<tr>
<td>M 2.26</td>
<td>Förderung lokal emissionsarmer öffentlicher Verkehrsmittel (Schienenpersonennahverkehr)</td>
<td>Q lokal bis stadtweit +</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm</td>
</tr>
<tr>
<td></td>
<td>Maßnahmen Wärmeversorgung von Gebäuden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 3.1</td>
<td>Reduzierung des Wärmebedarfs von Gebäuden</td>
<td>Q stadtweit 0/+</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm Bezirke</td>
</tr>
<tr>
<td>M 3.2</td>
<td>Saubere Energie für die Wärmeversorgung und Reduzierung der Emissionen aus Feststoffverbrennung in Kleinfeuerungsanlagen</td>
<td>Q stadtweit +</td>
<td>mittel- bis langfristig</td>
<td>SenStadtUm Bezirke</td>
</tr>
<tr>
<td>Nr.</td>
<td>Maßnahme</td>
<td>Wirkung</td>
<td>Umsetzung und Wirkungseintritt</td>
<td>Akteure</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lokal</td>
<td>mittel- bis langfristig</td>
<td></td>
</tr>
<tr>
<td>M 3.3</td>
<td>Saubere Mini-BHKW</td>
<td>lokal bis stadtweit 0/+</td>
<td>SenStadtUm Bezirke</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>räumlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 4.1</td>
<td>Partikelfilter für Baumaschinen</td>
<td>lokal bis stadtweit 0/+</td>
<td>SenStadtUm Bund</td>
<td></td>
</tr>
<tr>
<td>M 4.2</td>
<td>Verminderung diffuser Staubemissionen von Baustellen</td>
<td>lokal +</td>
<td>SenStadtUm Bezirke</td>
<td></td>
</tr>
<tr>
<td>M 4.3</td>
<td>Reduzierung transportbedingter Emissionen bei Bauvorhaben</td>
<td>lokal +</td>
<td>SenStadtUm Bezirke</td>
<td></td>
</tr>
<tr>
<td>M 5.1</td>
<td>Auflagen in Anlagengenehmigungen</td>
<td>lokal 0/+</td>
<td>SenStadtUm</td>
<td></td>
</tr>
</tbody>
</table>

Maßnahmen im Bausektor

Maßnahmen Industrie und Gewerbe

9.1 Raum-, Stadt- und Landschaftsplanung

M 1.1 Räumliche Planung unter Berücksichtigung der Stadtklimatologie und des Luftaustausches

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend im Planungsgeschehen</td>
<td>SenStadtUm, Bezirke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>k.A.</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Maßnahmenziel:

Umsetzung:
- Umsetzung der Maßnahmenstrategien des StEP Klima
- Fortschreibung des Vorranggebietes Klimaschutz im Landschaftsprogramm
- Abwägung stadtklimatologischer Belange und Berücksichtigung bei Festsetzungen in Bauleitplänen

Wirkung:
Nicht quantifiziert

89 http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/da411_05.htm
90 http://www.stadtentwicklung.berlin.de/planen/stadtentwicklungsplanung/index.shtml
M 1.2 Vermeidung neuer Belastungsschwerpunkte

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis Ende 2013</td>
<td>SenStadtUm, Bezirke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>muss im Einzelfall modelliert werden</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Maßnahmenziel:
Keine zusätzlichen Straßenabschnitte oder Belastungsschwerpunkte mit Grenzwertüberschreitungen aufgrund städtebaulicher Veränderung.

Umsetzung:
- Entwicklung von Vorgaben und Empfehlungen zum Erhalt breiter Straßenräume und Vermeidung von neuen Belastungsschwerpunkten durch städtebauliche Veränderungen
- Vorgaben zur Modellierung der Luftqualität
- Berücksichtigung der Vorgaben in der verbindlichen Bauleitplanung
- Untersuchung zur Wirkung von Belüftungsschneisen in Gebieten mit hoher Luftbelastung und schlechter Belüftung

Wirkung:
Lokal hoch, je nach Ausgangssituation kann sich durch die Schaffung einer Straßenschacht die verkehrsbedingte lokale Zusatzbelastung mehr als verdoppeln91. Dabei ist die Luftbelastung durch den Verkehr um so höher, je kleiner die Bebauungsabstände und je höher die Gebäude sind. Baulücken in der Straßenrandbebauung reduzieren die verkehrsbedingte lokale Zusatzbelastung durch bessere Verdünnung. Ein Baulückenanteil von 20 % führt im Vergleich zu einer geschlossenen Bebauung zu einer ca. 10 % niedrigeren Zusatzbelastung.

Maßnahmenziel:
- Erhalt des Straßenbaumbestandes und Pflanzung von 10.000 neuen Straßenbäumen schwerpunktmäßig an Straßen mit hoher Luftbelastung unter besonderer Berücksichtigung der Feinstaubminderung (Auswahl der Baumarten nach gesundheitlichen/allergologischen Gesichtspunkten)
- Erprobung von Fassaden- und Dachbegrünungen

Umsetzung:
- Stadtbaumoffensive, die auf Neupflanzung und nachhaltige Pflege zielt
- Unterstützung der Kooperationen zwischen öffentlicher Hand und privaten Akteuren
- Leitfaden zur Fassaden- und Dachbegrünung

Wirkung:

M 1.4 Immissionssensitive Entwicklung der Standorte des Stadtentwicklungsplan (StEP) Industrie und Gewerbe

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm, SenWiTechForsch, Bezirke</td>
<td>k.A.</td>
</tr>
<tr>
<td>Minderungspotenzial</td>
<td></td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Um zusätzliche Überschreitungen von Luftqualitätsgrenzwerten durch die Ansiedlung von neuen Unternehmen zu vermeiden oder zu begrenzen, sind bei der Genehmigung von Betrieben die Auswirkungen auf die Luftqualität zu untersuchen und ggf. im Rahmen der Genehmigung emissionsmindernde Auflagen vorzusehen. Um die Entwicklung der Standorte zu erleichtern, kann die noch verträgliche zusätzliche Emission für Luftschadstoffe (und ebenso Lärm) für jeden Standort bereits vorab modelliert und als weitere Information in die Steckbriefe aufgenommen werden. Zusätzlich sollte auch die Sensibilität der betroffenen Verkehrswege hinsichtlich zusätzlicher Verkehrsmengen durch eine Neuansiedlung untersucht werden.

Maßnahmenziel:

Umsetzung:
- Erarbeitung einer lufthygienische Bewertung der Standorte des StEP Industrie und Gewerbe
- Entwicklung von Emissionsminderungskonzepten für Standorte, in deren Umfeld bereits Überschreitungen von Luftqualitätsgrenzwerten bestehen oder bei der weiteren Ansiedlung von Emittenten wahrscheinlich sind. Im Rahmen derartiger Konzepte soll geprüft werden, ob sich hierfür das Konzept der Lärmkontingentierung auf Luftschadstoffe übertragen lässt.
- Berücksichtigung verkehrlicher Belastungen bei Neuansiedlungen

Wirkung:
Die Maßnahme wirkt in erster Linie lokal, ihre Wirkung kann nur quantifiziert werden, wenn die genaue Angaben zu den zukünftigen Emissionen durch neue Betriebe bekannt sind; im Einzelfall Vermeidung von Grenzwertüberschreitungen möglich.

Maßnahmenziel:

- Erhalt kurzer Wege durch Stärkung der Nahversorgung (wie Lebensmittel u.ä., ärztliche Grundversorgung)
- Reduzierung von motorisierten Einkaufsverkehren
- keine zusätzlichen Grenzwertüberschreitungen bei Neuansiedlung von Einzelhandel

Umsetzung:

- Umsetzung der Leitlinien des StEP Zentren 3
- Lufthygienische Bewertung der Verkehrsentstehung bei der Neuansiedlung von großflächigem Einzelhandel
- Initiierung eines Modellprojekts in Kooperation mit dem Einzelhandel zur Entwicklung von Strategien zur Reduzierung von motorisierten Einkaufsverkehr
- Berücksichtigung verkehrlicher Belastungen bei Neuansiedlungen unter Anwendung des „Leitfadens zur verkehrlichen Standortbeurteilung und Verkehrsfolgenabschätzung für verkehrsintensive Vorhaben“ (gemäß StEP Verkehr)

Wirkung:

Die Maßnahme wirkt in erster Linie lokal, ihre Wirkung kann nur quantifiziert werden, wenn genaue Angaben zu den verkehrlichen Wirkungen neuer Einzelhandelsflächen bekannt sind; im Einzelfall Vermeidung von Grenzwertüberschreitungen möglich.

Verkehrssparende Raumentwicklung

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm, Bezirke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>k.A.</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Eine Maßnahme für die Entwicklung von Standorten ist die Nachverdichtung von unter- oder nicht genutzten Flächen, z.B. durch die Wiedernutzung brachliegender, bereits erschlossener Flächen, die Schließung von Baulücken oder die Aufstockung von Gebäuden. Dabei muss aber im Einzelfall eine Prüfung erfolgen, ob mit derartigen Baumaßnahmen die Austauschbedingungen für Luftschadstoffe oder die Zufuhr von Frischluft negativ beeinflusst werden.

Maßnahmenziel:
- Reduktion des Verkehrsbedarfs, d.h. mehr Mobilität mit weniger motorisierten Verkehr
- Berücksichtigung der Wegelänge als ein Kriterium bei der Raumplanung
- keine neuen Siedlungsgebiete ohne leistungsfähige ÖPNV-Anbindung

Umsetzung:
- Konzentration der Siedlungsentwicklung entlang von Schienenkorridoren
- Entwicklung von Nachverdichtungsstrategien unter Berücksichtigung der Wirkungen auf die Lufthygiene
- Stärkung der Nahversorgung und Sicherung der kleinteiligen Versorgung
- Schaffung eines ausgewogenen wohnortnahen Arbeitsplatzangebots in allen Teilen Stadt, u.a. durch den auch im Rahmen des STEPs Verkehr angestrebten Abbau des strukturellen Arbeitsplatzdefizits in den östlichen Stadtteilen mit dem Ziel der Verkehrsvermeidung durch räumliche Priorisierung der Wirtschafts- und Forschungsförderung
- Integrierte Standortplanung bei Ansiedlung von Unternehmen mit erheblicher Verkehrseinsparung unter Berücksichtigung verkehrlicher Belastungen bei Neuansiedlungen unter Anwendung des „Leitfadens zur verkehrlichen Standortbeurteilung und Verkehrsfolgenabschätzung für verkehrsintensive Vorhaben (Leitfaden zur verkehrlichen Standortbeurteilung und Verkehrsfolgenabschätzung für verkehrsintensive Vorhaben (gemäß STEP Verkehr))

Wirkung:
Die Maßnahme unterstützt die Schaffung der Rahmenbedingungen zur Vermeidung der Emissionen des Straßenverkehrs. Eine Quantifizierung der Wirkung ist nur im Einzelfall im Rahmen der Beurteilung verschiedener Planungsalternativen möglich.

Soweit durch die Planungen Konflikte mit den Zielen der Luftreinhaltung, d.h. Grenzwertüberschreitungen nach Abwägung aller Interessen hingenommen werden sollen, sind Ausgleichsmaßnahmen in den Plan aufzunehmen, mit denen die Grenzwertüberschreitungen vermieden oder soweit dies nicht mit verhältnismäßigen Maßnahmen möglich ist, die Höhe und Dauer der Überschreitungen reduziert werden.

Die Maßnahme dient der Umsetzung der zuvor beschriebenen Maßnahmen, da diese im wesentlichen erst durch die Aufstellung von Bauleitplänen und Planfeststellungen in der Praxis Gestalt annehmen.

Maßnahmenziel:
- Vermeidung von zusätzlichen Grenzwertüberschreitungen durch Planinhalte

Umsetzung:
- Fortführung der TÖB-Tätigkeit
- Auswertung der Planungen und der erarbeiteten Hinweise zur Luftreinhaltung zur Identifizierung der Problemschwerpunkte
- Erfahrungsaustausch mit den planenden Behörden

Wirkung:
Die Maßnahme wirkt in erster Linie lokal, aber sehr langfristig. Ihre Wirkung kann nur einzelfallbezogen quantifiziert werden. Im Einzelfall ist die Vermeidung von Grenzwertüberschreitungen möglich.
9.2 Verkehr auf Straße, Schiene und Wasserwegen

Die im Folgenden mit „*“ gekennzeichneten Maßnahmen im Straßenverkehr basieren im Wesentlichen auf dem Stadtentwicklungsplan Verkehr 2025, der mit seiner Zielstellung einer nachhaltigen Entwicklung der Mobilität in der Stadt auch das Ziel der Reduzierung verkehrsbedingter Luftbelastungen verfolgt.

Der Schadstoffausstoß von Schienenfahrzeugen (Abrieb und Dieselabgase) sowie von Schiffen ist im Vergleich zum Straßenverkehr niedrig, kann aber lokal an Schienen- oder Wasserwegen zu Belastungen führen.
9.2.1 Fahrzeugtechnik

M 2.1 Umweltzone ohne Einzelausnahmen

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01.2015</td>
<td>SenStadtUm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial im Jahr 2015</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,6 t/a bzw. 3,6 % Dieselrußemission</td>
<td>Investitionen für Ersatz oder Nachrüstung von älteren Fahrzeugen (meist älter als 10 Jahre)</td>
</tr>
<tr>
<td>55 t/a bzw. 1,1 % NO2-Emission</td>
<td></td>
</tr>
</tbody>
</table>

Für die Umweltzone Berlin gelten Ausnahmen vom Verkehrsverbot zum einen aufgrund von Bundesrecht (Anhang 3 der 35. BImSchV); zum anderen aufgrund von Allgemeinverfügungen und Erteilung von Einzelausnahmen in Berlin. Dadurch halten nicht alle Fahrzeuge in der Umweltzone die geforderten Abgaskriterien ein. Im Jahr 2010 stammten noch etwa 35 % der Dieselrußemissionen von Fahrzeugen ohne grünen Plakette. Hätten auch diese Fahrzeuge die Kriterien der grünen Plakette eingehalten, wären etwa 24 t/a weniger Dieselrußpartikel, d.h. nur noch 102 t statt 126 t pro Jahr, emittiert worden.

Diese Minderung bezieht sich auch auf das Mindestkriterium Euro 3 mit Partikelfilter. Viele unter das Verkehrsverbot fallende Fahrzeuge würden jedoch durch neuere Fahrzeuge ersetzt, so dass auch eine zusätzliche Minderung der Stickoxidemissionen erreicht wird.

Mit der weitgehenden Beendigung der Erteilung von Einzelausnahmen können Personalressourcen in den Bezirken eingespart werden.

Maßnahmenziel:
Ausnahmen vom Verkehrsverbot sollen ab 2015 auf die in Anhang 3 der 35. BImSchV definierten Fälle begrenzt werden.

Umsetzung:
- Die Ausnahmeregelung für nicht-nachrüstbare Euro-3-Fahrzeuge könnte per Allgemeinverfügung bis zum 31.12.2014 befristet werden.

Hierfür wäre der Leitfaden „Ausnahmegenehmigungen“ anzupassen. Die Allgemeinverfügung für Euro-3-Fahrzeuge wäre nach Prüfung der Verhältnismäßigkeit unter sozialen und wirtschaftlichen Gesichtspunkten durch eine befristete Allgemeinverfügung zu ersetzen.

Wirkung:
Die Wirkung dieser Maßnahme wurde im Rahmen von netzweiten Modellierungen berechnet, wobei angenommen wurde, dass alle im Jahr 2015 noch verbliebenen Diesel-Fahrzeuge der Schadstoffgruppen 1 bis 3 durch Dieselfahrzeuge mit dem Abgasstandard Euro 6 ersetzt werden. Im Ergebnis führt dies zu einer Reduzierung der Dieselrußemissionen von 3,6 t/a bzw. 3,6 % und der Stickoxidemissionen von 55 t/a bzw. 1,1 % im Hauptverkehrsstraßennetz. Zusätzliche Minderungen ergeben sich auf Nebenstraßen, die jedoch nicht quantifiziert wurden.

Die Abgasnorm Euro 6 ist ab 01.01.2014 von Lkw und Bussen und ab 01.01.2015 von Pkw und ab September 2016 von allen leichten Nutzfahrzeugen einzuhalten. Gegenüber Euro 5 werden für Lkw und Busse Reduktionen der NO\textsubscript{x}- und der Dieselrußemissionen im Innerortsverkehr von 60 bis 90 % prognostiziert. Für Pkw sollen sich die Stickoxidemissionen um gut 60 % reduzieren (HBEFA 3.1). Dagegen wurden mit dem Übergang von Euro 4 auf den derzeit aktuellen Standard Euro 5 bei den Stickoxiden nur Minderungen bis zu 25 % erreicht. Der geringe Rückgang der NO\textsubscript{x}-Emissionen bis Euro 5 ist der wichtigste Grund, weshalb bei der Trendentwicklung auch im Jahr 2015 noch der NO\textsubscript{x}-Luftqualitätsgrenzwert überschritten wird. Erst 2020, wenn größere Anteile der Fahrzeugflotte die Euro-6-Norm erreichen, werden die Grenzwerte voraussichtlich eingehalten. Daher ist anzustreben, dass Fahrzeuge mit dem Abgasstandard Euro 6 bereits frühzeitig, d.h. deutlich vor dem gesetzlichen Einführungstermin, auf den Markt gebracht und gekauft werden. Hierzu können Nutzervorteile und finanzielle Anreize beitragen.

Maßnahmenziel:
Es wird angestrebt, dass 2015 der Anteil von Euro-6-Fahrzeugen an den in Berlin zugelassenen Fahrzeugen höher ist als im Bundesdurchschnitt in der im Handbuch für Emissionsfaktoren angegebenen Flottenzusammensetzung.

Umsetzung:
- Berlin wird prüfen, ob Nutzervorteile und eine Kennzeichnung von Fahrzeugen mit dem Abgasstandard Euro 6 sinnvoll und möglich sind.
- Förderung durch eine reduzierte Kfz-Steuer: Berlin wird sich im Bundesrat dafür einsetzen, dass nicht nur Euro-6-Pkw, sondern auch Euro-6-Nutzfahrzeuge und Busse steuerlich gefördert werden.
- Förderung durch reduzierte Maut-Sätze für Euro-6-Lkw: Berlin wird sich hierfür weiterhin im Bundesrat einsetzen.
- Berlin wird sich dafür einsetzen, dass nach Inkrafttreten der Euro-6-Norm möglichst wenig Sondergenehmigungen für den Verkauf von Lagerbeständen von Euro-5-Fahrzeugen vom Kraftfahrbundesamt erteilt werden.
- Die öffentliche Hand wird bei der Beschaffung von Dieselfahrzeugen ab sofort Euro-6-Fahrzeuge anschaffen, soweit diese Fahrzeuge für den Einsatzzweck verfügbar sind.

Wirkung:
Mit den in Kapitel 8.1.1 getroffenen Annahmen für den Anteil der Euro-6-Fahrzeuge an der gesamten Fahrzeugflotte ergeben sich für das gesamte Hauptverkehrsstraßennetz Minderungen der Dieselrußemissionen von 1,5 t/a bzw. 1,5 % und der Stickoxidemissionen von 42 t/a bzw. 0,8 % der Emissionen auf Hauptverkehrsstraßen. Zusätzliche Minderungen ergeben sich auf Nebenstraßen, die jedoch nicht quantifiziert wurden.

Die Wirkung auf die Luftqualität wurde im Rahmen des Maßnahmenbündels „Fahrzeugtechnik” berechnet. In der Summe lässt sich damit die Zahl der von Grenzwertüberschreitungen betroffenen Anwohnerinnen und Anwohner von Hauptverkehrsstraße um etwa 25 % reduzieren.

Maßnahmenziel:
Mindestens Erhalt des Anteils von Erdgasfahrzeugen an den in Berlin zugelassen Fahrzeugen von 0,3 %, möglichst Steigerung auf über 1 %.

Umsetzung:
- Weiterführung der GASAG-Förderung für Erdgasfahrzeuge: Dies ist bereits Bestandteil der mit der GASAG abgeschlossenen Klimaschutzvereinbarung 2011-2020[^100].
- Energiesteuerbefreiung fortschreiben: Berlin wird sich im Bundesrat für eine Fortschreibung der Steuervorteile für Erdgas als Kraftstoff nach 2018 einsetzen.
- Mautvorteile für Erdgas-Lkw: Berlin wird sich im Bundesrat für reduzierte Maut-Sätze einsetzen.

Wirkung:

M 2.4 Elektromobilität

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 2015 und darüber hinaus</td>
<td>SenStadtUm, SenWiTechForsch, Bezirke, Bundesregierung</td>
</tr>
</tbody>
</table>

Minderungspotenzial
- 1,2 t/a bzw. -1,2 % motorbedingte Partikel bzw. -0,2 % PM$_{10}$
- 67 t/a bzw. 1,4 % NO$_x$-Emission

Kosten
- ca. 7 Mio. € Erweiterung der Ladeinfrastruktur (Kofinanzierung durch das Land Berlin)
- ca. 10 Mio. € für Projektförderung
- Verlust Gebühreneinnahmen n.a.

Maßnahmenziel:
Es wird angestrebt, den Anteil der Fahrleistung von Elektrofahrzeugen im motorisierten Straßenverkehr kontinuierlich zu steigern.

Umsetzung:
- Umsetzung des Aktionsprogramms „Elektromobilität Berlin 2020“
- Ausbau der Ladeinfrastruktur, wobei auch Lademöglichkeiten für Elektrofahrräder geschaffen werden sollen.
- Berlin wird prüfen, ob Nutzervorteile für Elektrofahrzeuge, insbesondere für elektrisch betriebene Nutzfahrzeuge, geschaffen werden können.
- Berücksichtigung von Elektrofahrzeugen bei der Fahrzeugbeschaffung der Berliner Verwaltung und Betriebe

Wirkung:
Unter der Annahme, dass bis 2015 ein Fahrleistungsanteil von etwa 1 % erreicht wird, ergeben sich für das gesamte Hauptverkehrsstraßennetz Minderungen der Emission motorbedingter Partikel von ca. 1,2 t/a bzw. 1,2 % und der Stickoxidemissionen von etwa 67 t/a bzw. 1,4 %. Diese Emissionsminderung ist im gesamten Straßennetz wirksam. Die Wirkung auf die Luftqualität wurde im Rahmen des Maßnahmenbündels „Fahrzeugtechnik“ berechnet und nicht separat quantifiziert. In der Summe lässt sich damit die Zahl der von Grenzwertüberschreitungen betroffenen Anwohnerinnen und Anwohner von Hauptverkehrsstraße um etwa 25 % reduzieren.

Saubere Fahrzeuge im ÖPNV

Zeitplan der Realisierung

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 2013</td>
<td>SenStadtUm, BVG</td>
</tr>
</tbody>
</table>

Minderungspotenzial

- 300 t/a NO₂-Emissionen
- 5 bis 45 % der lokalen NO₂-Zusatzbelastung

Kosten
ca. 1,5 bis 2 Mio. € für SCR-Nachrüstung

Maßnahmenziel:

- Nachrüstung von ca. 120 Bussen mit Entstickungssystemen im Jahr 2013 und 50 bis 100 Bussen im Jahr 2014
- Einhaltung des Euro 5/EEV-Abgasstandards oder besser bis 2014 in der gesamten Flotte
- Bei der Neubeschaffung von Bussen ist der Abgasstandard Euro 6 so auszuschreiben, dass die angestrebte Emissionsminderung im Vergleich zu Euro 5 auch im Stadtverkehr wirksam ist.
- Beschleunigter Ersatz von Bussen, die nicht nachgerüstet werden, durch Euro-6-Busse oder Erd-/Biogas-Busse

Umsetzung:

- Nachrüstung von Bussen mit SCRT (Verwendung von UEP-Fördermitteln wird angestrebt)
- Verbindliche, hohe Anforderungen an Unterauftragnehmer
- Monitoring und periodische Berichterstattung durch die BVG

Wirkung:

Die Wirkung der Umstellung der gesamten Bus-Flotte auf den Abgasstandard Euro 5 im Vergleich zur Flottenzusammensetzung von 2008 wurde für den Hardenbergplatz und ausgewählte umliegende Straßen mit Busverkehr mit einem detaillierten Ausbreitungsmodell (MISKAM) berechnet. Während die Partikelemissionen aufgrund des bereits erreichten hohen Ausstattungsgrades mit Partikelfiltern weitgehend unverändert bleiben, sinken die Stickoxidemissionen der Busflotte um etwa 50 bis 60 % und die Stickoxidemissionen des gesamten lokalen Straßenverkehrs an Straßen mit Buslinien je nach lokalem Beitrag der Busemissionen um etwa 5 bis 45 %. Die modellierte NO₂-Konzentration am Messpunkt Hardenbergplatz sank dadurch um gut 13 µg/m³ oder ca. 20 %. Für alle anderen Standorte liegt die Reduzierung der Luftbelastung entsprechend des NO₂-Emissionsanteils der Busse in der Regel niedriger. Gegenüber der Bus-Flotte von 2011 ließen sich bei Einhaltung des EEV-Abgasstandards durch alle Busse die Stickoxidemissionen um etwa 300 t/a reduzieren. Das sind etwa 35 % der Stickoxidemissionen der BVG-Busse im Jahr 2011. Die Wirkung der Maßnahme beschränkt sich weitgehend auf Straßenabschnitte mit Linienbusverkehr, trägt aber aufgrund der Höhe des Emissionsminderung auch zur Reduzierung der stadtweiten NO₂-Belastung bei.
M 2.6 Saubere Kommunalfahrzeuge

Zeitplan der Realisierung
- laufend
- Partikelfilter für alle nachrüstbaren Dieselfahrzeuge bis Ende 2012

Zuständigkeit
- Senatsverwaltungen, Bezirke, Einrichtungen des öffentlichen Rechts

Minderungspotenzial
- k.A.

Kosten
- Kosten für Ersatzbeschaffungen und Partikelfilter, Mehrkosten bei vorzeitiger Anschaffung von Euro-6-Kfz oder für Elektrofahrzeuge

Sofern in Zukunft auch eine Nachrüstung mit Systemen zur Reduzierung der Stickoxidemissionen möglich ist, ist die Eignung für schwere Nutzfahrzeuge unter Berücksichtigung der jeweiligen Einsatzbedingungen zu prüfen.

Maßnahmenziel:
- Ausrüstung aller nachrüstbaren Dieselfahrzeuge mit Partikelfiltern bis Ende 2012 (gemäß Luftreinhalteplan 2005-2010)
- Schrittweise Umrüstung/Ersatz des Fuhrparks auf den Abgasstandard Euro 6
- Nachrüstung mit Stickoxidminderungssystemen für schwere Nutzfahrzeuge vor Euro 5, soweit verfügbar und unter den gegebenen Einsatzbedingungen sinnvoll
- Dieselfahrzeuge mit dem Abgasstandard Euro 5 müssen soweit möglich zusätzlich über einen geschlossenen Partikelfilter verfügen.

Umsetzung:
- Vorgabe von Umweltstandards für die Beschaffung im Rahmen der Allgemeinen Verwaltungsvorschrift für die Anwendung von Umweltschutzanforderungen bei der Beschaffung von Liefer-, Bau- und Dienstleistungen (Verwaltungsvorschrift Beschaffung und Umwelt – VwVBU) und regelmäßige Anpassung an den technischen Fortschritt
- Berücksichtigung der Lebenszykluskosten inkl. Umweltkosten bei der Bewertung von Angeboten
- Festlegung von Fahrzeuganforderungen im Rahmen von Klimaschutzvereinbarungen mit kommunalen Betrieben wie BSR oder Wasserwerken
- Informationskampagne für die Beschaffungsstellen über Fahrzeugtechnologien

Wirkung:
Im Vergleich zu den Gesamtmissionen des Straßenverkehrs ist eine Emissionsminderung der kommunalen Fahrzeugflotte gering und kann nicht in Hinblick auf die Luftqualität beurteilt werden. Merkliche Effekte sind lokal dort zu erwarten, wo hohe Anteile an Entsorgungsverkehr auftreten.
Nachrüstung von Euro-4-Dieselfahrzeugen

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 2015</td>
<td>SenStadtUm, Bundesregierung, EU-Kommission</td>
</tr>
</tbody>
</table>

Minderungspotenzial
- 12 t/a bzw. 12,1 % Dieselrüssemission
- 33 t/a bzw. 0,7 % NO\textsubscript{2}-Emission

Kosten
- ca. 1.000-2.000 € für Partikelfilter je Pkw/LNfz
- ca. 10.000 bis 15.000 € für Entstickungssysteme je Lkw oder Bus

Für Pkw und leichte Nutzfahrzeuge sind aus Kostengründen weiterhin nur reine Partikelminderungssysteme auf dem Markt. Da gemäß der 35. BImSchV für die grüne Plakette für Dieselfahrzeuge der Abgasstandard Euro 4 ohne zusätzlichen Partikelfilter ausreichend, kann mit der Umweltzone keine weitere Nachrüstung erreicht werden. Hierfür müssen andere Anreizinstrumente entwickelt werden.

Im Jahr 2015 werden in Berlin voraussichtlich noch 75.000 Diesel-Pkw, 22.000 leichte Nutzfahrzeuge und 8.000 Lkw über 3,5 t mit dem Abgasstandard Euro 4 zugelassen sein. Über den Anteil der Euro-4-Dieselfahrzeuge, die noch nicht mit einem Partikelfilter oder Entstickungssystemen ausgestattet sind, liegen keine ausreichenden Informationen vor, da diese Merkmale bei der Zulassung nicht vollständig erfasst werden. Für Diesel-Pkw wird geschätzt, dass etwa ein Drittel noch nicht mit einem Partikelfilter ausgestattet ist.

Maßnahmenziel:
- Für das Jahr 2015 wird angestrebt, dass mehr als die Hälfte der dann noch vorhandenen schweren Nutzfahrzeuge und Busse mit dem Abgasstandard Euro 4 (ohne SCR und DPF) eine zusätzlich Minderung der Partikel- und Stickoxidedemission von 50 % erreichen, sofern geeignete und im Stadtverkehr funktionsfähige Minderungssysteme verfügbar sind.
- Für das Jahr 2015 wird angestrebt, dass mehr als die Hälfte der dann noch vorhandenen Pkw und leichten Nutzfahrzeuge mit dem Abgasstandard Euro 4 (ohne DPF) eine zusätzlich Minderung der Partikelemission von 50 % erreichen.

Umsetzung:
- Berlin wird sich bei der Bundesregierung und der EU-Kommission dafür einsetzen, dass die rechtlichen Rahmenbedingungen für die Nachrüstung von Stickoxidminderungssystemen geschaffen werden.
- Berlin wird prüfen, ob Nutzervorteile für nachgerüstete Fahrzeuge geschaffen werden können.
- Es ist zu prüfen, wie im Rahmen der Ausschreibung von Transportleistungen der öffentlichen Hand entsprechend nachgerüstete Fahrzeuge berücksichtigt werden können.
- Berlin wird sich im Bundesrat für Förderprogramme einsetzen.
- Berlin wird sich im Bundesrat für eine Berücksichtigung von Entstickungssystemen bei der Autobahnmaut einsetzen.

Wirkung:
Unter Annahme der o.g. Ziele ergeben sich Minderungen der Dieselrüssemissionen von 12 t/a bzw. 12,1 % und der Stickoxidedemissionen von 33 t/a bzw. 0,7 %. Diese Emissionsminderung ist im gesamten Straßennetz wirksam.

M 2.8 Partikelminderung für Fahrgastschiffe

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 2014</td>
<td>SenStadtUm</td>
</tr>
</tbody>
</table>

Minderungspotenzial
- 0,5 t/a Dieselruß, lokal an stark frequentierten Wasserwegen merkliche Reduzierung der Dieselrußbelastung

Kosten
- ca. 1 Mio. €, davon 50 % UEP-Förderung angestrebt

Fahrgastschiffe weisen oft hohe spezifische Abgasemissionen auf, da die Abgasgrenzwerte für Schiffe weniger anspruchsvoll als für Kraftfahrzeuge sind und zudem die Motoren oft ein hohes Alter erreichen. In einem Modellvorhaben (s. Kapitel 6.11) wurde daher die Nachrüstung mit Partikelfiltern untersucht. Es konnte gezeigt werden, dass eine hohe Abscheideleistung (> 90 %) erreicht wird und die Systeme eine gute Dauerhaltbarkeit aufweisen. Die Nachrüstung eines Fahrgastschiffes kostet zwischen 20.000 und 30.000 €.

Eine Reduzierung der Partikelemissionen von Binnenschiffen wurde zudem mit der zum 01.01.2011 erfolgten Einführung von schwefelfreiem Dieselkraftstoff (Schwefelgehalt unter 10 ppm) für Binnenschiffe erreicht.

Maßnahmenziel:
Angestrebt wird eine Reduzierung der Partikelemissionen von Fahrgastschiffen von 20 % innerhalb und 10 % außerhalb des Gebiets der Umweltzone durch Nachrüstung von bis zu 30 % der etwa 100 Fahrgastschiffe in Berlin.

Umsetzung:
- Anreizprogramm für die Nachrüstung bereits bestehender Fahrgastschiffe in Berlin: Förderung von 50 % der Kosten über UEP angestrebt
- Prüfung von Nutzervorteilen, z.B. Vorteile bei Kosten für Liegeplätze oder Schleusen

Wirkung:
Reduzierung der Dieselpartikel-Emissionen auf Wasserwegen um etwa 0,5 t/a, das entspricht 15 % der im Jahr 2015 zu erwartenden Partikelemissionen der Berliner Schifffahrt.

Wie Beispiele insbesondere in der Schweiz zeigen, lassen sich auch Diesellokomotiven und Dieseltriebwagen mit Partikelfiltern und Stickoxidminderungssystemen nachrüsten. In Deutschland werden diese Systeme allerdings bisher erst sehr vereinzelt eingesetzt. Im Rahmen des europäischen Projekts ECORails102 wurden von der Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz Vorschläge für Umweltstandards für die Ausschreibung von Leistungen im Schienenpersonennahverkehr entwickelt. Da die betroffenen mit Dieseltraktion befragten Regionalbahnlinien stets gemeinsam mit anderen Bundesländern, insbesondere zusammen mit Brandenburg bestellt werden, sind die Umweltstandards mit diesen Ländern gemeinsam abzustimmen, so dass der Luftreinhalteplan Berlin hier keine abschließenden Vorgaben machen kann.

Maßnahmenziel:
Schrittweise Reduzierung der Schadstoffemissionen von Diesellokomotiven und -triebwagen durch Einsatz von Neufahrzeugen und Nachrüstung.

Umsetzung:
- Berlin wird sich im Bundesrat für die Entwicklung und Umsetzung einer nationalen Nachrüststrategie für Diesellokomotiven einsetzen.

Wirkung:

M 2.10 Kommunikationskampagnen zur Beschaffung sauberer Fahrzeuge

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>k.A.</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Maßnahmenziel:
Aufbau kontinuierlicher, zielgruppenorientierter Beratungsmöglichkeiten

Umsetzung:
- Zusammenarbeit mit Verbänden
- zielgruppenorientierte Kampagnen: Bereits im Jahr 2011 startete in Berlin die von der EU geförderte Kampagne „Clean Drive“, die sich in erster Linie an Autohändler wendet.

Wirkung:

103 www.clean-drive.eu
9.2.2 Verkehrslenkung

M 2.11*104 Verstetigung

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufende Prüfung der Koordinierungen Modellvorhaben bis Ende 2013</td>
<td>SenStadtUm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>lokal ca. 10 % weniger Emissionen</td>
<td>ca. 5.000 € pro Feinmodellierung pro Abschnitt</td>
</tr>
<tr>
<td>lokal im Mittel 2 µg/m³ weniger NO₂</td>
<td>ca. 100.000 € für Begleituntersuchungen</td>
</tr>
<tr>
<td>ca. 38 % weniger von NO₂-Grenzwertüberschreitungen Betroffene</td>
<td>ca. 5.000 bis 25.000 € Anpassungen der Lichtsignalanlagen pro Knoten</td>
</tr>
</tbody>
</table>

Maßnahmenziel: Reduzierung der Stauanteile, bestimmt als Anteil der Verkehrsqualitätsklasse (LOS) 4, an der Verkehrsleistung in Straßenabschnitten mit Grenzwertüberschreitungen im Jahr 2015.

Umsetzung:

- Prüfung der Stauvermeidungspotenziale für etwa 90 Abschnitte mit NO₂-Grenzwertüberschreitungen. Dies umfasst u.a. Feinmodellierungen für ausgewählte Abschnitte, wobei zunächst bevorzugt Abschnitten ohne ÖV-Bevorrechtigung betrachtet werden, da hier eine Koordinierung einfacher ist.
- Modellvorhaben einer Zuflusssteuerung und Grünphasenänderung für die Schildhornstraße bei drohendem Stau durch die zu erwartende Verkehrszunahme nach Eröffnung des Boulevard Berlin 2012. Im Rahmen von Begleituntersuchungen soll die Übertragbarkeit auf andere staugefährdete Straßen geprüft werden.
- Modellvorhaben zur Untersuchung der Stauvermeidungspotenziale unter Berücksichtigung von ÖV-Bevorrechtigung für die Potsdamer Straße und Prüfung der Übertragbarkeit.

Wirkung: Die Maßnahme wirkt nur lokal im jeweiligen Straßenabschnitt. Unter der theoretischen Zielannahme einer vollständigen Vermeidung von Stop&Go-Verkehr liegen die erreichbaren Emissionsminderungen lokal im Mittel bei 10 %, bezogen auf die Gesamtemissionen des Kfz-Verkehrs nur bei 0,2 %. Damit sinkt lokal die NO₂-Konzentration im Mittel um 2 µg/m³ (max. 9,5 µg/m³) und die Feinstaubkonzentration um 0,2 µg/m³ (max. 3,5 µg/m³). Dies führt zu einem Rückgang der von NO₂-Grenzwertüberschreitungen Betroffenen um etwa 38 % (Feinstaub: etwa 25 % weniger Betroffene).

Das "*" kennzeichnet Maßnahmen, die dem Stadtentwicklungsplan Verkehr 2025 entlehnt wurden.
M 2.12* Stadtverträgliche Geschwindigkeit auf Hauptverkehrsstraßen

Zeitplan der Realisierung
- laufend

Zuständigkeit
- SenStadtUm, VLB, Bezirke (Aufstellung von Verkehrszeichen)

Minderungspotenzial
- Abnahme der lokalen Zusatzbelastung: -15 % NO₂ und -30 % Feinstaub;
- lokal bis zu 2 bis 3 µg/m³ weniger NO₂ und Feinstaub PM₁₀;
- bis zu ca. 40 % weniger von Grenzwertüberschreitungen Betroffene (PM₁₀ und NO₂)

Kosten
- ca. 10.000 € pro Straßenabschnitt für die Einrichtung
- 100.000 € für Begleituntersuchungen

Maßnahmenziel:
Einführung stadtrverträglicher Geschwindigkeiten auf Hauptverkehrsstraßen in Abschnitten, in denen auch 2015 noch mit einer Überschreitung des NO₂-Grenzwertes zu rechnen ist, sofern ein überwiegend stetiger Verkehrsfluss gesichert ist und die Belange des ÖPNV sowie der anderen Verkehrsteilnehmerinnen und -teilnehmer ausreichend berücksichtigt werden können.

Umsetzung:
- Anordnung von Geschwindigkeitsbeschränkungen zur Reduzierung der Luft- und Lärmbelastung nach Einzelfallprüfung
- Unterstützung und Mitwirkung bei Initiativen zur lokal gezielten Reduzierung der innerörtlichen Geschwindigkeit auf Bundesebene

Wirkung:
Für den betroffen Straßenabschnitt kann eine Reduzierung der lokalen Zusatzbelastung für NO₂ von bis zu 15 % und für Feinstaub PM₁₀ bis zu 30 % erreicht werden. Die Auswirkung auf die Gesamtbelastung durch NO₂ und PM₁₀ ist abhängig von der Vorbelastung. Unter Annahme optimaler Voraussetzungen kann mit Geschwindigkeitsreduzierungen die Zahl der von Grenzwertüberschreitungen Betroffenen sowohl hinsichtlich PM₁₀ und NO₂ um etwa 40 % reduziert werden.
M 2.13* Umweltsensitive Verkehrssteuerung

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm, VLB</td>
</tr>
</tbody>
</table>

Minderungspotenzial

<table>
<thead>
<tr>
<th>lokalen und temporären mittel bis hoch</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Kosten für Einrichtung, noch nicht quantifiziert</td>
</tr>
<tr>
<td></td>
<td>• ca. 100.000 € für Begleituntersuchungen</td>
</tr>
</tbody>
</table>

Zur Reduzierung von Konzentrationsspitzen aufgrund hohen Verkehrsaufkommens bei gleichzeitig ungünstigen meteoro-
logischen Bedingungen sollen in besonders betroffenen Straßenabschnitten gezielt verkehrslenkende Maßnahmen (ange-
passte Steuerprogramme für Lichtsignalanlagen, Information der Verkehrsteilnehmer über Umfahrungsmöglichkeiten)
zum Einsatz kommen. Hierfür implementiert die Verkehrsinformationszentrale derzeit ein Prognose-Tool zur Berechnung
der aktuellen und Prognostizierung der Luftbelastung der nächsten Stunden im Straßennetz anhand von Verkehrs-, Mete-
orologie-, und Luftgütedaten. Werden Schwellwerte überschritten, sollen die dafür entwickelten Verkehrssteuerungspro-
grame geschaltet und Verkehrsteilnehmer über Anzeigetafeln im Straßenraum sowie über Internet und Radio informiert
werden.

Maßnahmenziel:

Einrichtung einer umweltoptimierten Verkehrssteuerung, z.B. für die Frankfurter Allee oder die Invalidenstraße, um ab 2015 die Einhaltung des NO₂-Grenzwertes und eine Reduzierung der PM₁₀-Tageswertüberschreitungen zu erreichen. Prüfung der Übertragbarkeit auf andere hoch belastete Straßenabschnitte.

Umsetzung:

- Der Aufbau der erforderlichen Hard- und Software für die Steuerung ist durch Vergabe eines entsprechenden Auftrags für die Einrichtung einer Verkehrsinformationszentrale bereits gestartet.
- Entwicklung der notwendigen Signalsteuerungspläne und Implementierung
- Untersuchung der Wirkung der Steuerungsstrategie und der Übertragbarkeit auf andere hoch belastete Straßenabschnitte

Wirkung:

Die emissionsmindernde Wirkung hängt stark davon ab, wieweit Stausituationen vermieden und die Verkehrsmenge redu-
ziert werden kann. Für die Frankfurter Allee ergibt die Annahme einer vollständigen Stauvermeidung bei einem Rückgang des Verkehrsaufkommens um 10 % eine Emissionsminderung im betrachteten Straßenabschnitt von bis zu 26 % Stick-
oxiden und 35 % Rußpartikel. Die im Verhältnis zur gesunkenen Verkehrsmenge hohe Emissionsminderung ergibt sich durch die damit ebenfalls erreichbare Stauvermeidung. Die Auswirkung auf die Gesamtbelastung durch NO₂ und PM₁₀ ist abhängig von der Vorbelastung.

Um Störungen durch Straßenbaustellen zu vermindern, wird angestrebt, die Dauer der Bauarbeiten zu reduzieren. Durch Weiterentwicklung der Baustellenkoordinierung sind möglichst Ereignisse zusammenzufassen, um Verkehrseinschränkungen zu minimieren.

Maßnahmenziel:
Reduzierung von Stausituationen durch Großereignisse und Störfälle (Aktionspläne).

Umsetzung:
- Weiterentwicklung der im Modellprojekt IQMobility erprobten Steuerstrategien
- Aufbau eines Störungs- und Überlastungsmanagement
- Aufbau eines Informations- und Störfallmanagements für die Verkehre zum zukünftigen Großflughafen Schönefeld (AIRVIS)
- Ausbau der Verkehrsinformationstafeln
- Weiterentwicklung der Baustellenkoordinierung
- Prüfung, ob Informationskonzepte für Veranstalter von Großveranstaltungen zur Reduzierung der Verkehrseinschränkungen beitragen können und ggf. Erarbeitung von Planungshilfen

Wirkung:
 Lokal können an dem Tag des Ereignisses Emissionen in dem Maße vermieden werden, wie es gelingt, Stausituationen zu vermeiden.
M 2.15 Lenkungskonzepte für Lkw-Durchgangsverkehr

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm, Bund (Lkw-Maut)</td>
</tr>
<tr>
<td>Minderungspotenzial</td>
<td>Kosten</td>
</tr>
<tr>
<td>lokal gering bis mittel</td>
<td>ohne Ansatz</td>
</tr>
</tbody>
</table>

Maßnahmenziel:
Prüfung des Lkw-Durchgangsverkehrsanteils über die Stadtautobahn und Prüfung von möglichen Verlagerungspotenzialen auf den Berliner Außenring. Es ist sicherzustellen, dass etwaige Maßnahmen die Zielstellung nicht konterkarieren, indem die Lkw-Verkehre unnötig auf das Stadtstraßennetz verlagert werden.

Umsetzung:
- Anpassung der Wegweisung mit Ausrichtung auf den Berliner Außenring
- Verkehrstelematik
- Umorganisation des übergeordneten Straßennetzes in der Innenstadt
- Straßenbaumaßnahmen im Zuge des mittleren Ringes (Weiterbau der A100)
- Straßenbaumaßnahmen zur Entlastung von Wohngebieten
- Prüfung, ob sich mit einer Änderung der Mauthöhen-Verordnung (zeitliche und räumliche Mautdifferenzierungen) der Lkw-Durchgangsverkehr auf der A100 ohne Verdrängung in das nachgeordnete Stadtstraßennetz reduzieren ließe; ggf. Initiierung einer Initiative im Bundesrat

Wirkung:
Umweltsensitive Lenkungskonzepte im Zusammenhang mit dem innerstädtischen Verkehr

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm</td>
</tr>
</tbody>
</table>

Minderungspotenzial
local gering bis mittel

Kosten
ohne Ansatz

Eine Quantifizierung der Durchgangsverkehre durch die Berliner Innenstadt ist schwierig. Bestimmte Teilräume werden aufgrund der innerstädtischen Zielverkehre immer durch Durchgangsverkehr durch beispielsweise einzelne Bezirke gekennzeichnet sein. Im STEP Verkehr sind daher verschiedene Maßnahmen zur Reduzierung des Durchgangsverkehrs durch städtische Quartiere bzw. innerstädtische Bezirke oder Teilräume vorgesehen, deren Umsetzung auch für die Luftreinhaltung wichtig ist. Allerdings muss bei der Verlagerung von Verkehren, beispielsweise auch die Auswirkung auf die Luftbelastung der Ausweichstrecken untersucht und bewertet werden.

Sofern Ableitungen von Durchgangsverkehren durch Bezirke durch den Bau neuer Straßenverbindungen wie dem Weiterbau der A100 oder der tangentialen Verbindung Ost erreicht werden sollen, ist in der Bilanz auch die mögliche Entstehung neuer Verkehre zu berücksichtigen.

Maßnahmenziel:
Verminderung des Verkehrs (vor allem LKW) in sensiblen Bereichen (z.B. Wohngebiete, Ortsteilzentren, Innenstadt), wobei keine neuen Grenzwertüberschreitungen an anderen Straßenabschnitten auftreten sollen. Ist dies unvermeidbar, z.B. an neuen Autobahnabschnitten oder neuen Hauptverkehrsstraßen, so sind Ausgleichsmaßnahmen im Planfeststellungsbeschluss festzulegen.

Umsetzung:
- Umorganisation des übergeordneten Straßennetzes in der Innenstadt
- Anpassung der Wegweisung
- Verkehrstelematik
- Änderung von Lichtsignalkoordinierungen
- Straßenbaumaßnahmen im Zuge des mittleren Ringes (Weiterbau der A100)
- Straßenbaumaßnahmen zur Entlastung von Wohngebieten

Wirkung:

Anders ist die Situation bei Straßenneubauten wie dem Weiterbau der A100, die zur Bündelung von Verkehren dienen, wobei jedoch an diesen Straßen hohen Belastungen auftreten können. Hier muss eine Abwägung im Rahmen der Planfeststellung erfolgen.

Begründet wird dies gerne mit dem Betrieb der Klimaanlage – rechtlich zulässig ist das Laufenlassen des Motors damit jedoch trotzdem nicht. Im Luftreinhalteplan für London wird dieses Problem beispielhaft angegangen, in dem eine deutliche Erhöhung des Bußgeldes von 20 auf 120 £ und verstärkte Kontrollen gefordert werden[105].

Maßnahmenziel:
Reduzierung des Beitrags der Reisebusse zur Luftbelastung durch Entwicklung und Umsetzung eines gesamtstädtischen Reisebuskonzeptes unter Berücksichtigung der Belange der Luftreinhaltung (und des Lärmschutzes) und Maßnahmen gegen unerlaubtes Laufenlassen der Motoren bei Standzeiten.

Umsetzung:
- Entwicklung eines Reisebuskonzeptes, zunächst für die Innenstadt mit Schwerpunkt Museumsinsel, u.a. zur besseren Koordinierung der Zubringer- und Abholfahrten und Organisation der parkenden Busse
- Parkrauminformation über Großparkanlagen u.a. für Reisebusse
- Unterstützung der effizienten verkehrlichen Abwicklung (fließender und ruhender Reisebusverkehr) durch Kommunikationsmaßnahmen wie den „BusStop“-Berlin (Vermeidung Parksuchverkehr, Darstellung von gewidmeten Haltepunkten)
- Standortuntersuchungen für einen zweiten ZOB
- Zur Reduzierung der Emissionen aus unerlaubten Laufenlassens der Motoren ist im ersten Schritt eine Aufklärungskampagne für Fahrerinnen und Fahrer unter Mitwirkung von Verbänden vorgesehen, im zweiten Schritt eine bessere Kontrolle durch Ordnungsrämer.

Wirkung:
Die Maßnahme ermöglicht lokale Entlastungen in Gebieten mit hohem Reisebusverkehrsanteil durch primäre (direkt busbezogen) und sekundäre (Auswirkungen auf den übrigen Verkehr) Effekte.

9.2.3 Verkehrsverlagerung und -vermeidung

M 2.18* Förderung des ÖPNV

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm, VBB, BVG, S-Bahn Berlin GmbH, DB, sonstige ÖPNV-Anbieter</td>
</tr>
</tbody>
</table>

Minderungspotenzial

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
</table>
| stadtweit hoch, nicht näher quantifiziert | • Finanzvolumen ÖPNV Berlin ca. 800 Mio. € in 2010; für 2014 sind 835 Mio. € geplant{106}
 • Zusatzbedarf für ÖPNV-Beschleunigung ca. 27 Mio. € |

Maßnahmenziel:
Sicherung eines attraktiven, umweltfreundlichen ÖPNV-Angebots, um zusammen mit dem Fuß- und Radverkehr den Anteil des Umweltverbundes am Modal-Split der Wege in der Gesamtstadt und im Pendlerverkehr zu steigern.

Umsetzung:
Der SteP Verkehr 2025 und der Nahverkehrsplan Berlin enthalten zahlreiche Maßnahmen zur Förderung des ÖPNV. Zusätzlich kann dies mit folgenden Aktivitäten unterstützt werden:

- Initiativen auf Bundesebene zur Sicherung der Finanzierung des ÖPNV und des öffentlichen Regionalverkehrs sollen durch entsprechende Beschlüsse der Umweltgremien unterstützt werden (Umweltministerkonferenz, Bund-Länderausschuss Immissionsschutz).
- Weiterentwicklung des Bus-Beschleunigungsprogramms
- Kommunikationskampagnen

Wirkung:
Mit der Verlagerung von Pkw-Fahrten auf den ÖPNV können Schadstoffemissionen vermieden werden, wobei die Emissionen des ÖPNV (Busse) in der Bilanz zu berücksichtigen sind. Die Bedeutung des ÖPNV zeigt sich beispielhaft, wenn das Angebot durch Streik oder technische Problem drastisch eingeschränkt ist. Eine Auswertung von Verkehrsdaten während des BVG-Streiks im Frühjahr 2008 ergab einen Anstieg des Kfz-Verkehrs um 7 bis 12 % verbunden mit einer Zunahme der Feinstaubemissionen um 2 bis 9 %. Die Stickoxidemissionen stiegen dagegen nur dort, wo keine Buslinien fahren, während auf Strecken mit Busverkehr die Mehremissionen des Pkw-Verkehrs durch den Wegfall der Busemissionen in etwa kompensiert wurden.

{106} Abgeordnetenhaus Berlin Drucksache Nr. 16/2772 und 16/3370: Eckpunkte für den Nahverkehrsplan 2010-2014. Beschluss vom 01.07.2010
M 2.19* Förderung des Fuß- und Radverkehrs

Zeitplan der Realisierung
laufend

Minderungspotenzial

Zuständigkeit
SenStadtUm, Bezirke

Kosten
im StEP Verkehr 2025 geschätzter Bedarf: ca. 15 Mio. € pro Jahr bis 2025

Maßnahmenziel:
Erreichen eines Modal Splits von 75 % (Umweltverbund) zu 25 % (motorisierter Individualverkehr) auf gesamtstädtischer Ebene, mit einem im Vergleich zu heute höheren Radverkehrsanteil.

Umsetzung:
Der StEP Verkehr 2025 enthält zahlreiche Maßnahmen zur Förderung des Fuß- und Radverkehr. Dazu gehören:

- Umsetzung der Berliner Fußverkehrsstrategie
- Fortschreibung und Umsetzung der Berliner Radverkehrsstrategie u.a. mit folgenden Maßnahmen:
 - Erhalt, Pflege und Ausbau der Radverkehrsanlagen als komfortables, dichtes, lückenloses und sicheres Netzsystem unter Verwendung bewährter und kostengünstiger Komponenten wie Radstreifen auf der Fahrbahnen, Freigabe von Einbahnstraßen und Fahrradstraßen
 - weiterer Ausbau der intermodalen Verknüpfung mit dem ÖPNV
 - weiterer Ausbau von Radverkehrsabstellanlagen
 - zielgruppenspezifische Kommunikationskampagnen
 - Anpassung der Radverkehrsanlagen an höhere Nutzerzahlen und höhere Geschwindigkeiten durch Elektrofahr- räder
- Berlin wird sich im Bundesrat für eine Sicherung der Finanzierungsinstrumente und -mittel für den Radverkehr durch den Bund einsetzen.

Wirkung:
Die mögliche Reduzierung von Luftschadstoffen lässt sich aus der Weglängenstatistik für den motorisierten Individualver- kehr abschätzen, in dem von der Entfernung abhängige Anteile auf den nicht-motorisierten Verkehr verlagert werden. Für
Diese Potenzialschätzung wurde angenommen, dass 50 % der Wege bis 3 km, 30 % der Wege bis 6 km, 15 % der Wege bis 9 km, 10 % der Wege bis 12 km und 3 % der Wege über 12 km verlagert werden. Unter Verwendung der mittleren Pkw-Emissionsfaktoren für den Innerortsverkehr für das Bezugsjahr 2015 ergeben sich damit Emissionsminderungen von etwa 8 t/a Dieselruß, 36 t/a Partikel aus Abrieb und Aufwirbelung und 413 t/a Stickoxide. Dies entspricht einer Minderungsrate von 10 bis 13 % bezogen auf die innerörtlichen Pkw-Emissionen. Auswirkungen auf die Luftqualität wurden nicht bestimmt, da hierfür sehr aufwändige Modellierungen notwendig wären, wo im Straßennetz Pkw-Fahrten entfallen.

Quelle: Mobilität in Städten – SrV

Maßnahmenziel:
Der StEP Verkehr strebt an, die Parkraumbewirtschaftung auf alle innerstädtischen Zielgebiete des Pkw-Verkehrs mit starker Parkraumnachfrage und Nutzungskonkurrenz sowie auf die unmittelbar daran angrenzenden Wohngebiete auszudehnen.

Umsetzung:
Die Ausdehnung und Weiterentwicklung der Parkraumbewirtschaftung erfolgt in Zusammenarbeit mit den Berliner Bezirken.

Wirkung:
M 2.21* Mobilitätsmanagement

Zeitplan der Realisierung
ab 2012

Zuständigkeit
SenStadtUm als Initiator

Minderungspotenzial
nicht quantifiziert

Kosten
offen, Kosten für Entwicklung und Umsetzung von Kampagnen

Mobilitätsmanagement dient nicht nur der Luftreinhaltung, sondern ist auch Teil der Maßnahmen des Lärmaktionsplans Berlin.

Maßnahmenziel:
Reduzierung des Pkw-Verkehrs durch Vermeidung oder Verkürzung von Fahrten und durch Verlagerung auf die Verkehrsmittel des Umweltverbundes.

Umsetzung:
Der Lärmaktionsplan enthält bereits folgende Vorschläge für die Förderung von Mobilitätsmanagement:
- Durchführung von Pilotprojekten unterschiedlicher Struktur und betrieblichen/örtlichen Rahmenbedingungen, z.B. öffentliche Verwaltung, Industriebetrieb, Gewerbepark (Pool-Lösungen), Krankenhaus, Bildungseinrichtungen
- Durchführung einer flächendeckenden Informationskampagne (Zielgruppe Betriebe), z.B. in Verbindung mit VBB, Wirtschaftsverbänden
- Durchführung einer flächendeckenden Informationskampagne (Zielgruppe Beschäftigte)
- Herausgabe von Handlungsleitfäden für verschiedene Zielgruppen
- Durchführung von Vorbild- und Imagekampagnen
- Durchführung von Maßnahmen in der eigenen Verwaltung (Dienststellen)

Zum Teil wurden entsprechende Pilotprojekte in Berliner Unternehmen und Behörden bereits durchgeführt und dabei die hohen existierenden Reduktionspotenziale verdeutlicht. Hieran gilt es zukünftig anzuknüpfen.

Der STEP Verkehr 2025 sieht neben der Förderung des betrieblichen Mobilitätsmanagements auch Maßnahmen für eine zielgruppenspezifische Mobilitätsberatung (auch mehrsprachig) für Senioren, Zu- und Umziehende, Menschen mit Migrationshintergrund vor.
Wesentliche Akteure sind Betriebe, die Wohnungswirtschaft und Verkehrsdienstleister.

Wirkung:
Wirkungsuntersuchungen zu Maßnahmen des betrieblichen Mobilitätsmanagements haben gezeigt, dass eine Reduktion von rund 20% der Anteile des MIV am Berufsverkehr zu einzelnen Betrieben möglich ist. Auch hinsichtlich berufsbedingter Fahrten bestehen z.T. erhebliche Reduktionspotenziale, wobei das konkrete Maß stark von der wirtschaftlichen Tätigkeit abhängt.
Förderung Carsharing

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab 2011</td>
<td>Bezirke, SenStadtUm</td>
</tr>
</tbody>
</table>

Minderungspotenzial nicht quantifiziert

Kosten Bezirke: Verwaltungsaufwand, Beschilderung

Maßnahmenziel:
- Bereitstellung von ca. 1.000 Stellplätzen für Carsharing-Autos
- Unterstützung der Einführung flexibler Carsharing-Systeme (in Abhängigkeit von den Erfahrungen)

Umsetzung:
- Erarbeitung eines Leitfadens für die zuständigen Bezirke
- Unterstützung von Länderinitiativen auf Bundesebene für einen Gesetzentwurf auf Bundesebene zur Änderung des StVG und der StVO, der den Kommunen die Möglichkeit zur Einrichtung von Carsharing-Stellplätzen im öffentlichen Straßenraum eröffnet und einen bundesweit einheitlichen Rahmen für die Kennzeichnung der Stellplätze und der Fahrzeuge sowie für die Gebührenerhebung schafft.
- Durchführung von Begleituntersuchungen zu den (Umwelt-)Wirkungen flexibler Carsharing-Systeme
- Aufbau einer Ladeinfrastruktur für Elektrofahrzeuge innerhalb der Carsharing-Flotten

Wirkung:

109 Quelle: SenStadt: Mobilität der Stadt – Berliner Verkehr in Zahlen Ausgabe 2010

Maßnahmenziel:
Reduzierung der Luftbelastung durch den Wirtschaftsverkehr

Umsetzung:

- Verkehrskonzepte für die Standorte des StEP Industrie und Gewerbe
- Sicherung der Gleis- und Wasseranschlüsse für den Güterverkehr
- Lenkungs- und Verkehrssteuerungskonzepte zur möglichen Bündelung von Lkw-Verkehren auf weniger sensiblen Routen
- Neue, stadtverträgliche Konzepte zur Ver- und Entsorgung (City-Logistik, Alternative Antriebe, Nutzung der Randzeiten)
- Aufbau eines stadtregionalen Informationssystems für den Wirtschaftsverkehr

Wirkung:
9.2.4 Infrastruktur

M 2.24 Sanierung von Straßenoberflächen

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm, Bezirke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>lokal, in erster Linie weniger Feinstaub aus Abrieb und Aufwirbelung (nicht quantifiziert)</td>
<td>nur nach Prüfung des Einzelfalls quantifizierbar</td>
</tr>
</tbody>
</table>

Der Zustand der Straßenoberfläche beeinflusst die Partikelbildung durch Abrieb und Aufwirbelung. Im Mittel stammen etwa 14% der PM_{10}-Belastung an Straßen aus dieser Quelle. Bei einem schlechten Fahrbahnzustand mit überwiegend rissigen oder löchrigen Fahrbahnoberflächen oder bei Pflasterdecken können diese Partikelmissionen jedoch zwei bis fünf mal höher sein als bei Straßen mit glatter Asphalt-Oberfläche in gutem Zustand. Daher haben die bereits aus Gründen des Lärmschutzes (und des Erhalts der Straßeninfrastruktur und der Verkehrssicherheit) durchgeführten Sanierungen von schadhaf-| x-

Maßnahmenziel:

den Straßenoberflächen mit Priorisierung der Straßenabschnitte mit PM_{10}-Grenzwertüberschreitungen.

Umsetzung:
- Abstimmung mit Straßensanierungen im Rahmen der Lärmminderungsplanung: alle Straßenabschnitte mit PM_{10}-Grenzwertüberschreitungen weisen auch eine erhöhte Lärmbelastung auf.
- Abstimmung mit den Bezirken bei der Auswahl vorrangig Instandzusetzender Straßenabschnitte

Wirkung:
Die Prozesse der Partikelmission durch Abrieb und Aufwirbelung werden bisher nur unvollständig verstanden und lassen sich nur mit großen Unsicherheiten modellieren. Eine Quantifizierung der Wirkung ist deshalb problematisch. Der höchste Effekt einer Fahrbahnsanierung wurde aus der Stadt Nauen/Brandenburg berichtet, wo sich die verkehrsbedingte PM_{10}-Zusatzbelastung nach Instandsetzung der Fahrbahnoberfläche halbierte. Die Wirkung auf die PM_{10}-Immissionskonzentration ist abhängig vom Anteil dieser Quelle an der PM_{10}-Gesamtbela-| stung. Sie ist in jedem Fall weitgehend auf das lokale Umfeld beschränkt, da die Partikel aus Abrieb und Aufwirbelung aufgrund ihrer Größe (überwiegend mehrere Mikrometer oder sogar über 10 µm) in der Atmosphäre nicht so weit transportiert werden, wie die sehr viel kleineren Dieselsauerpartikeln. An ausgewählten Modellstrecken sollte daher die Wirkung der Straßensanierung messtechnisch begleitet werden, um die Wirkung dieser Maßnahme für weitere Planungen besser beurteilen zu können.

M 2.25 Neuaufteilung von Straßenräumen

Zeitplan der Realisierung

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>lokal 5 bis 10 % der Zusatzbelastung</td>
<td>SenStadtUm, Bezirke</td>
</tr>
</tbody>
</table>

Kosten
- ca. 50.000 € und mehr pro Strecke für Baumaßnahmen
- ca. 10.000 € pro Abschnitt für Modellierung

Maßnahmenziel:
Weiterentwicklung der straßenräumlichen Maßnahmen der Lärmaktionsplanung zur Reduzierung der Luftbelastung von Anwohnerinnen und Anwohnern von hoch belasteten Hauptverkehrsstraßen.

Umsetzung:
- Mikroskalige Modellierung der Luftschadstoffkonzentrationen für einen bisher im Rahmen des Lärmaktionsplans umgestalteten Straßenabschnitt unter Verwendung der im Rahmen der Begleituntersuchungen erhobenen verkehrlichen Daten und Ableitung der Minderungspotenziale
- Bewertung des lufthygienischen Minderungspotenzials für die im Rahmen der laufenden Fortschreibung des Lärmaktionsplans identifizierten, potenziell in Frage kommenden Straßenzüge

Wirkung:
Für die oben genannten Beispielstellen konnten noch keine mikroskaligen Modellierungen der Verteilung der Luftschadstoffkonzentrationen durchgeführt werden. Mikroskalige Modellierungen für andere Straßenabschnitte, z.B. für die Frankfurter Allee auf Höhe der Messstation zeigen, dass bei einer Vergrößerung des Abstands zur Emissionsquelle von 2 bis 3 m eine Abnahme der lokalen verkehrsbedingten Zusatzbelastung im Bereich des Gehweges bzw. Hausfassade von etwa 5 bis 10 % erwartet werden kann.

Förderung lokal emissionsarmer öffentlicher Verkehrsmittel durch Erhaltung und Ausbau von Strecken des Schienenpersonennahverkehrs (besonders Straßenbahnstrecken)

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend</td>
<td>SenStadtUm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>lokale Stickoxidminderungen bei Ersatz von Busfahrten, nicht quantifiziert</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Maßnahmenziel:
Ausbau des elektrisch betriebenen Schienenpersonennahverkehrs zur Vermeidung von Stickoxidemissionen von Bussen.

Umsetzung:
Die in der Koalitionsvereinbarung des SPD-CDU-Senats vereinbarten Vorhaben zum Ausbau des öffentlichen Personenschienenverkehr sollten auch aus Gründen der Luftreinhaltung schnellst möglich realisiert werden. Dies sind:
- die Straßenbahnverbindung vom Nordbahnhof zum Hauptbahnhof
- der Lückenschluss U5 vom Alexanderplatz zum Hauptbahnhof
- Planung und Bau der S21
- Straßenbahnneubaustrecke Alexanderplatz zum Kulturförum (nach Fertigstellung der U-Bahn-Linie 5)
- Straßenbahnneubaustrecke Hauptbahnhof zur Turmstraße
- Straßenbahnneubaustrecke WISTA zum Sterndamm/Schöneweide
- die Straßenbahnverbindung des Bahnhofs Ostkreuz
- die Verlängerung der S-Bahn ab Bahnhof Spandau nach Westen bis Hackbuschstraße/Albrechtshof und
- der Neubau eines S-Bahnhofs Tempelhofer Feld

Wirkung:
Die Wirkung wird im wesentlichen lokal auf die Straßenabschnitte beschränkt sein, in denen Busfahrten ersetzt werden. Zusätzlich besteht ein Emissionsminderungspotenzial, wenn durch neue Schienenverbindungen Fahrgäste für den ÖPNV durch den Umstieg vom Pkw gewonnen werden.
9.3 Wärmeversorgung von Gebäuden

M 3.1 Reduzierung des Wärmebedarfs von Gebäuden

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>lanfristig</td>
<td>SenStadtUm, Bezirke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht quantifiziert</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Jede Reduzierung des Wärmebedarfs dient nicht nur dem Klima- und Ressourcenschutz, sondern reduziert auch die Emission von Luftschadstoffen.

Maßnahmenziel:

Umsetzung:
Fortführung und Weiterentwicklung der bisher in Berlin eingesetzten Instrumente im Klimaschutz, insbesondere:
- Energiespar-Contracting und Energiespar-Partnerschaften
- zielgruppengerechte Angebote und die Durchführung von Energie- und Klimaberatungen für Haushalte sowie kleine und mittlere Unternehmen
- energetischen Sanierung des Gebäudebestandes der Eigenbetriebe des Landes Berlin und der städtischen Wohnungsbaugesellschaften
- Bundesratsinitiativen zur Förderung von energetischen Gebäudesanierungen wie Umlagefähigkeit energetischer Sanierungsmaßnahmen, Förderung von Contracting-Modellen, steuerliche Anreize

Wirkung:
M 3.2 Saubere Energie für die Wärmeproduktion und Reduzierung der Emissionen aus Kleinfeuerungsanlagen

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>langfristig</td>
<td>SenStadtUm</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Minderungspotenzial (zusammen mit M 3.3)
- 407 t/a PM$_{10}$-Emission
- 34 % weniger PM$_{10}$-Betroffene

Maßnahmenziel:
Reduzierung der Feinstaub- und Benzo[a]pyren-Emissionen aus der Feststoffverbrennung in Kleinfeuerungsanlagen in Berlin.

Umsetzung:
- Erhalt bestehender Fernwärmegebiete
- Quantifizierung des Beitrags von Holzverbrennung zur Feinstaubbelastung in Berlin durch Staubinhaltstoffanalysen (Levoglucosan)

Soweit sich aus den Untersuchungen ein merkliches Minderungspotenzial ergibt, sollen folgende Maßnahmen im erforderlichen Umfang umgesetzt werden:
- Ausdehnung des im Flächennutzungsplan definierten Luftvorranggebietes mit Vorgaben zu Heizungsanlagen auf die erforderlichen Gebiete (soweit innerhalb der Darstellungssystematik des FNP umsetzbar) mit gleichzeitiger Prüfung, ob statt des Vergleichs mit den Emissionen von Ölheizungen geeignete Emissionsgrenzwerte für Feinstaub und NO$_x$ definiert werden können

Wirkung:

Im Rahmen der Modellrechnungen für 2015 wurde das maximale Minderungspotenzial dieser Maßnahmen in einem Szenario geprüft, in dem Partikelemissionen von Kleinfeuerungsanlagen mit Feststoffbrennstoffen und Zusatzheizungen wie Kaminöfen vollständig auf Null gesetzt wurden, d.h. diese Feuerungen müssten durch eine partikelfreie Wärmebereitstellung wie Gas ersetzt werden (Verbot von Festbrennstoffen). In der Summe würde dies eine Minderung der Emissionen von PM$_{10}$ um 407 t/a bedeuten.

Die Auswirkung der Maßnahme auf die Luftqualität wurde innerhalb des Maßnahmenpakets 3 modelliert. Durch die Reduzierung der Luftbelastung des städtischen Hintergrundes sinkt auch an Hauptverkehrsstraßen die Schadstoffkonzentration und es wird für das Jahr 2015 ein Rückgang der Zahl der von PM$_{10}$-Grenzwertüberschreitungen betroffenen Anwohnerinnen und Anwohnern um etwa 34 % prognostiziert.
M 3.3 Saubere Mini-BHKW

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 2015</td>
<td>Bund, SenStadtUm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht quantifiziert</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

Mit der gekoppelten Erzeugung von Wärme und Strom in Blockheizkraftwerken (BHKW) werden besonders hohe energetische Wirkungsgrade erreicht, mit der sich gegenüber der separaten Erzeugung bis zu 30 % Primärenergie einsparen lassen. BHKW-Anlagen werden daher vermehrt zur Beheizung von Gebäudekomplexen als sogenannte Mini- oder Mikro-BHKW mit Leistungen bis 50 kW_{el} (teilweise bis 1 MW_{el}) entwickelt und aus Gründen des Klimaschutzes mit öffentlichen Mitteln gefördert.

114 Umweltbundesamt: Ausschreibungsempfehlung für gasbetriebene BHKW – Umweltaspekte. Dessau 2010
Maßnahmenziel:
- Innerhalb des Luftvorranggebiets des Flächennutzungsplans Berlin sollen in Wohn- und Bürogebäuden zukünftig nur gasbetriebene Anlagen oder Anlagen mit Brennstoffzellen installiert werden.
- Neu installierte Mini-BHKW mit Gasbetrieb erfüllen mindestens die Ausschreibungsempfehlungen des Umweltbundesamtes.
- Neu installierte Mini-BHKW für flüssige Brennstoffe sind mit einem Partikelfilter ausgestattet und halten die halben Stickoxid-Emissionsgrenzwerte der TA-Luft ein.
- Bei Nachbarschaftskonflikten durch bestehende öl-betriebene Anlagen ist eine Nachrüstung mit einem Partikelfilter anzustreben.

Umsetzung:
- Inkraftsetzen der Umweltstandards für die Beschaffung der öffentlichen Hand, die bereits hohe Anforderungen an öl-betriebene BHKW stellen und Ergänzung von Standards für gasbetriebene Anlagen.
- Initiativen auf Bundesebene zur Schaffung anspruchsvoller Emissionsstandards für Verbrennungsmotoren in BHKW mit einer Feuerungswärmeleistung < MW
- Anpassung der Formulierung zu Heizungsanlagen im Luftvorranggebiet im Flächennutzungsplan Berlin
- Berücksichtigung hoher Umweltstandards entsprechend der UBA-Empfehlungen bei zukünftigen Förderprogrammen, z.B. im Fall einer Förderung im Rahmen des Umweltentlastungsprogramms Berlin (UEP)
- Empfehlungen für die zuständigen Bezirksämter für Festlegungen in Bauleitplänen und Baugenehmigungen sowie zum Umgang mit Nachbarschaftskonflikten

Wirkung:
Die Maßnahme trägt weniger zur Vermeidung bestehender Emissionen bei, sondern soll zukünftige Emissionen reduzieren. Diese Minderung wirkt sowohl lokal im Umfeld von BHKW als auch auf die städtischen Hintergrundbelastung. Eine Anwendung der UBA-Ausschreibungsempfehlungen bedeutet für gasbetriebene BHKW eine Reduzierung der zulässigen Stickoxidemissionen um 60 % im Vergleich zu den bisher verwendeten Standards der UEP-Förderbedingungen.
9.4 Bausektor

M 4.1 Partikelfilter für Baumaschinen

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend ab 2012</td>
<td>SenStadtUm, ausschreibende Stellen der öffentlichen Hand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vermeidung von gut 100 t/a Dieselruß</td>
<td>ca. 1.000 bis 15.000 € pro Baumaschine</td>
</tr>
<tr>
<td>• lokal und stadtweit wirksam</td>
<td></td>
</tr>
</tbody>
</table>

Motoren von Baumaschinen weisen oft hohe spezifische Schadstoffemissionen auf, da für diese Maschinen sehr viel weni
ger strenge Abgasstandards als für Kraftfahrzeuge gelten. Lokal können Baumaschinen daher zu erhöhten Schadstoffbelas
tungen führen, zumal einige Maschinen auf Baustellen im Dauerbetrieb über viele Stunden laufen. In der Summe erreichen heute in Berlin die Dieselrußemissionen der Baumaschinen mit 140 t/a fast die des Straßenverkehrs, da hier mit der Um

Maßnahmenziel:
Angestrebt wird eine Nachrüstung von Baumaschinen mit Partikelfiltern zur Reduzierung der Partikelemissionen dieser Quellgruppe um 75 % bis zum Jahr 2015.

Umsetzung:
- Fortführung des bereits im Dezember 2011 gestarteten Modellvorhabens zur Erprobung von Partikelfilter-Nachrüstsys
temen bei verschiedenen Baumaschinen. Nach Beendigung des Modellvorhabens erfolgt eine Auswertung und Bewer
tung der Ergebnisse und ggf. ihre Überführung in geeignete Maßnahmen unter Einbeziehung der betroffenen Wirt
schaftskreise und der Senatsverwaltung für Wirtschaft, Technologie und Forschung.
- Informationen für Bauunternehmen und Baumaschinenverleiher und Erstellung einer Liste geeigneter Nachrüstsys
teme und nachrüstfähiger Baumaschinen
gen treten ab 2014 mit der im Oktober 2012 verabschiedeten Verwaltungsvorschrift zur öffentlichen Beschaffung in Kraft.
- Nachrüstung von kommunalen mobilen Maschinen/Geräten und selbst fahrenden Arbeitsmaschinen soweit technisch möglich
- Berlin will sich im Bundesrat für die Einführung bundesweiter Vorgaben bei öffentlichen Bauvorhaben analog der Ber
liner Vergabeanforderungen einsetzen. Ob darüber hinaus die Initiative auch eine generelle nationale Filterpflicht für Baumaschinen beinhalten soll, wird nach Abschluss des Modellvorhabens zur Erprobung von Partikelfilter-Nachrüstsys
temen geprüft.

Wirkung:
Unter Annahme der o.g. Emissionsminderung lassen sich mit der Maßnahme Dieselpartikelemissionen von etwa 105 t/a einsparen. Als Vergleich konnte durch die Stufe 2 der Umweltzone der Rußausstoß bei schweren Lkw um 30 t/a reduziert werden, so dass die Filternachrüstung bei Baumaschinen auch dann sinnvoll erscheint, wenn das Minderungspotenzial aufgrund der gegeben Unsicherheiten geringer eingeschätzt würde. Die Auswirkung der Maßnahme auf die Luftqualität wurde innerhalb des Maßnahmepakets 3 modelliert, das zusätzlich die Reduzierung der Feinstaubemissionen aus Klein
feuerungsanlagen (M 3.3) umfasst. In der Summe wird mit der stadweit erreichbaren Minderung des Feinstaubausstoßes die städtische Hintergrundkonzentration von Feinstaub so gesenkt, dass die Zahl der von Grenzwertüberschreitungen Be
troffenen an Hauptverkehrsstraßen bis 2015 gegenüber der Trendentwicklung um etwa 40 % reduziert wird. Etwa ein Fün
tel dieser Verbesserung kann der Filternachrüstung bei Baumaschinen zugeordnet werden. Die Wirkung ist unabhängig von
verkehrlichen Maßnahmen, die zu einer weiteren Absenkung der Betroffenenzahlen führen.
M 4.2 Verminderung diffuser Staubemissionen von Baustellen

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>laufend ab 2012</td>
<td>SenStadtUm, Bezirke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>lokal hoch</td>
<td>• für die Bauwirtschaft: ca. 1 bis 5 % der Baukosten</td>
</tr>
<tr>
<td></td>
<td>• Informationskampagne ca. 30.000 €</td>
</tr>
<tr>
<td></td>
<td>• Personalkosten für Kontrollen</td>
</tr>
</tbody>
</table>

Maßnahmenziel:
- Reduzierung diffuser Staubemissionen durch Einhaltung der Leitfadens „Vermeidung und Verminderung von Staubemissionen auf Baustellen“

Umsetzung:
- Informationskampagne für Bauunternehmen
- Information für Bauherren
- Fortbildung für Architekten und Bauingenieure
- Kooperationsvereinbarungen mit der Bauwirtschaft zur guten Baustellenpraxis
- Prüfung, ob Auflagen in Baugenehmigungen, Bebauungsplänen und Planfeststellungen aufgenommen werden können
- Vorgabe von Umweltstandards für Baustellen der öffentlichen Auftraggeber
- Zusätzliches Personal für Kontrollen oder Schulung sonstiger Kontrollkräfte

Wirkung:
In der Umgebung ist mit einer hohen Wirkung der Maßnahme zu rechnen. Diese kann allerdings nicht quantifiziert werden, da die Datenbasis über die erreichbaren Emissionsminderungen nicht ausreicht, um den Effekt auf die Luftqualität zu modellieren.
M 4.3 Reduzierung transportbedingter Emissionen bei Bauvorhaben

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistikkonzepte ab 2012</td>
<td>SenStadtUm, Planungs- und Genehmigungsbehörden bei</td>
</tr>
<tr>
<td>Modernisierung der Baufahrzeuge bis 2014</td>
<td>Senat und in den Bezirken</td>
</tr>
<tr>
<td>Minderungspotenzial</td>
<td>Kosten</td>
</tr>
<tr>
<td>lokal mittel bis hoch</td>
<td></td>
</tr>
</tbody>
</table>

Weitere leicht vermeidbare Emissionen entstehen durch unnötiges Laufenlassen des Motors bei wartenden Lkw.

Maßnahmenziel:
- Reduzierung der baustellenbedingten Lkw-Emissionen durch Einsatz sauberer Fahrzeuge und weniger Fahrten
- Reduzierung der Verschmutzung von Straßen durch Baufahrzeuge

Umsetzung:
- Für Großbaustellen ist der Transport über Schienen- und Wasserwege zu prüfen und sofern möglich im Planfeststel- lungsbeschluss oder in der Baugenehmigung festzulegen.

Wirkung:
In London konnte mit einem Bau-Frachtzentrum, das vier Großbaustellen belieferte, etwa 40 % der sonst notwendigen Lkw-Fahrten und die damit verbundenen Emissionen vermieden werden. Damit werden besonders die Straßen im Umfeld der Baustelle entlastet.
Zur emissions- und immissionsmindernden Wirkung von Reifenwaschanlagen liegen keine Daten vor, aus Vergleichen mit anderweitig verschmutzten Straßen, z.B. Splitt im Winter, kann gefolgt werden, dass an eine stark verschmutzten Straße die Partikelbelastung

Transport for London (Editor)
London Construction Consolidation Centre.
Final report. London 2008
9.5 Industrie und Gewerbe

Industrie, Kraftwerke und Gewerbe verursachen in Berlin etwa 36 % der Stickoxidemissionen und 13 % der Feinstaubemissionen (PM$_{10}$). Zusätzlich wird ein Teil der mobilen Maschinen, die insgesamt einen Anteil von etwa 4 % an den Feinstaubemissionen Berlins erreichen, in Industrie und Gewerbe eingesetzt. Die Stickoxide dieses Sektors stammen zu über 90 % aus Großfeuerungsanlagen, d.h. aus Kraftwerken. Die Abgaskonzentrationen liegen bereits heute deutlich unter den vorgeschriebenen Grenzwerten und entsprechen der bestverfügbaren Technik. Für diese Anlagen lassen sich keine weiteren vertretbaren Maßnahmen zur Emissionsminderung durchführen. Da die Abgase dieser Anlagen über hohe Schornsteine abgeleitet und dadurch sehr gut verdünnt werden, ist der Beitrag zur Stickstoffdioxidbelastung im städtischen Hintergrund und an Straßen gering und erreicht an Hauptverkehrsstraßen nur etwa 2 %.

M 5.1 Auflagen in Anlagengenehmigungen: Reduzierung der Emissionen mobiler Maschinen und Geräte

<table>
<thead>
<tr>
<th>Zeitplan der Realisierung</th>
<th>Zuständigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab sofort</td>
<td>Genehmigungsbehörden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minderungspotenzial</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 21 t/a Dieselrußemissionen</td>
<td>für Partikelfilterausrüstung ca. 1.000 bis 10.000 € pro Motor</td>
</tr>
</tbody>
</table>

Zu den Emissionsquellen in genehmigungsbedürftigen Anlagen gehören auch Dieselmotoren zum Antrieb von mobilen Maschinen und Geräten oder stationären Maschinen. Da die Emissionsgrenzwerte für derartige Motoren gemäß der 28. BImSchV oder der TA Luft weniger anspruchsvoll sind als z.B. im Kraftfahrzeugsektor, sind Emissionsminderungen durch Anordnungen zum Erreichen des Standes der Technik möglich. Stand der Technik ist heute die Ausstattung derartiger Motoren mit geschlossenen Partikelfiltern mit einem Wirkungsgrad von mehr als 90 %.

Maßnahmenziel:
Reduzierung der Partikelemissionen von Dieselmotoren in mobilen Maschinen, Geräten und stationären Anlagen in genehmigungsbedürftigen Anlagen

Umsetzung:
In die Genehmigung für Neuanlagen und in Änderungsgenehmigungen wird eine Verpflichtung zur Ausrüstung von Dieselmotoren mit geschlossenen Partikelfiltern in mobilen Maschinen und Geräten aufgenommen, die in der Anlage eingesetzt werden.

Wirkung:
Diese Maßnahme dient zusammen mit der Maßnahme M 4.1 der Reduzierung der Emissionen von Baumaschinen und anderen mobilen Maschinen und Geräten. In der Summe lassen sich mit diesen beiden Maßnahmen Dieselpartikelemissionen in Höhe von 126 t/a, davon etwa 21 t/a in genehmigungsbedürftigen Anlagen einsparen. Die Auswirkung der Maßnahme auf die Luftqualität wurde innerhalb des Maßnahmepakets 3 modelliert, das zusätzlich die Reduzierung der Feinstaubemissionen aus Kleinfeuerungsanlagen (M 3.3) umfasst. In der Summe wird die städtischen Hintergrundkonzentration von Feinstaub so gesenkt, dass die Zahl der von Grenzwertüberschreitungen Betroffenen an Hauptverkehrsstraßen bis 2015 gegenüber der Trendentwicklung um etwa 40 % reduziert wird.
9.6 Maßnahmen, die nicht weiter verfolgt werden

Neben den in den Kapitel 9.1 bis 9.5 festgelegten Maßnahmen wurden weitere Maßnahmen diskutiert, aber nach Abwägung der Belange der Verursachergerechtigkeit, Verhältnismäßigkeit, Wirksamkeit oder rechtlichen Durchführbarkeit nicht in den Maßnahmenkatalog aufgenommen. Sofern sich die im folgenden beschriebenen Maßnahmen noch in einem frühen Versuchstadium befinden oder allein aus rechtlichen Gründen derzeit nicht möglich sind, wird die weitere Entwicklung beobachtet, um ggf. zu einem späteren Zeitpunkt die Anwendbarkeit erneut zu prüfen.

Ausweitung der Umweltzone auf die gesamte Fläche des Landes Berlin

Umweltzone „Stufe 3“

Ausdehnung von lokalen Lkw-Durchfahrverboten auf Hauptverkehrsstraßen

City-Maut

In Deutschland fehlen derzeit für die Einführung einer City-Maut die rechtlichen Grundlagen. Straßenbenutzungsgebühren werden nur im Rahmen der Lkw-Maut auf der Grundlage des Autobahnbenutzungsgebührenverordnungs, für privat finanzierte Straßenbauprojekte wie Tunnel (z.B. der Lübecker Herrentunnel) auf der Grundlage des Fernstraßenbauprivatfinanzierungsgesetzes und für einige Privatstraßen, z.B. im Alpenraum, erhoben.

Reduzierung der Reisezeit um etwa 30 % beobachtet. Es wurden Rückgänge der verkehrsbedingten Schadstoffemissionen um etwa 10 % berechnet.

Intensivierte Straßenreinigung und Winterdienst mit Feinstaubkleber

In der Hoffnung, den Straßenstaub an der Fahrbahnoberfläche binden und damit die Aufwirbelung nennenswert reduzieren zu können, wurde in mehreren europäischen Städten versuchsweise das in flüssiger Form vorliegende Calzium-Magnesium-Azetat (CMA) auf die Fahrbahn stark befahrener Straßen aufgebracht und mit Messungen der Feinstaubkonzentration und anderer Schadstoffe begleitet. Das auch als Enteisungsmittel nutzbare CMA hat die Eigenschaft, den Staub an der Fahrbahnoberfläche zu binden. Allerdings wird die Substanz von den fahrenden Fahrzeugen relativ schnell von der Fahrbahn abgerieben, so dass eine etwaige Minderungswirkung insbesondere bei stark verkehrsbelasteten Straßen nur drei bis vier Stunden anhält. Danach muss CMA erneut aufgebracht werden, damit die Klebewirkung anhält. Seine enteisende Wirkung ist wesentlich schwächer als die des in Berlin bei drohender Straßenglättung eingesetzten Feuchtsalzes, so dass CMA im Winterdienst nur präventiv eingesetzt werden kann. Da hohe Feinstaubwerte nicht nur während winterlicher Frostperioden auftreten, müsste die Anwendung von CMA als Staubbinder über wesentlich längere Zeiträume und aufgrund der schnellen Abnutzung sehr viel häufiger erfolgen, als der Einsatz von Feuchtsalz. Um die Hafteigenschaften der Straßenoberfläche nicht zu verschlechtern, muss CMA sehr genau dosiert und sehr gleichmäßig aufgebracht werden. Dies erfordert wiederum spezielle zusätzliche Vorrichtungen an den entsprechenden Einsatzfahrzeugen des Winterdienstes.

Während bei Testanwendungen in Österreich und bei einem ersten Versuch in London ein feinstaubmindernder Effekt von 10 % im Mittel und von bis zu 30 % an einzelnen Tagen ermittelt wurde, konnte bei einem Versuch an der hoch belasteten und stark verkehrsbelasteten Messstelle Neckartor in Stuttgart keinerlei Minderungseffekt nachgewiesen wer-
Die Stadt Stuttgart hat deswegen entschieden, CMA nicht weiter einzusetzen. Für die widersprüchlichen Ergebnisse gibt es bislang keine schlüssige Erklärung. Es wird vermutet, dass das im Vergleich zu den Teststrecken in Klagenfurt, Linz und Bruneck wesentlich höhere Verkehrsaufkommen in Stuttgart und das damit verbundene sehr schnelle Abtragen des CMA durch die zahlreichen Kfz die Feinstaubklebewirkung dort marginalisiert hat.

Da die Verkehrsbelastung im Berliner Hauptverkehrsstraßen mit der in Stuttgart eher vergleichbar ist als mit der in den Österreichischen Teststädten, ist zu erwarten, dass der Einsatz von CMA auf Berliner Straßen ähnlich wenig Wirkung zeigen dürfte wie in Stuttgart.

Deshalb wird, auch vor dem Hintergrund der erheblichen mengenspezifischen Kosten für den Einsatz von CMA und der für die CMA-Dosierung notwendigen Umrüstung des Fahrzeugparks der BSR, der Einsatz von CMA zur Feinstaubminderung nicht in Erwägung gezogen.

9.7 Unterstützende Maßnahmen auf nationaler und europäischer Ebene

Bereits im Luftreinhalte- und Aktionsplan 2005-2010 wurden zusätzliche Maßnahmen aufgeführt, die auf nationaler und europäischer Ebene umgesetzt werden sollten, da lokale Maßnahmen ohne einen adäquaten europäischen oder nationalen Rechtsrahmen oft nicht wirkungsvoll umgesetzt werden können oder insgesamt nicht ausreichen, um die Immissionsgrenzwerte, insbesondere für Feinstaub (PM$_{10}$) und Stickstoffdioxid (NO$_2$) einhalten zu können.

Die im Luftreinhalteplan 2005-2010 erhobenen Forderungen nach Maßnahmen zur Emissionsminderungen bei stationären Quellen in den östlichen Nachbarstaaten sind also nach wie vor aktuell. Wie in den deutsch-polnischen Beratungen deutlich wurde, sind zwar Maß-
nahmen im Kraftwerks- und Industriesektor ergriffen worden, jedoch fehlen in Polen bislang Regelung zur Begrenzung der Emissionen von Kleinefeuerungsanlagen, die wesentlich zur grenzüberschreitenden Verfrachtung von Feinstaub beitragen.

In diesem Zusammenhang ist zu begrüßen, dass die Europäische Kommission im Rahmen der Ecodesign-Richtlinie eine europäische Regelung erarbeitet hat, mit der die Schadstoffemissionen kleiner Feuerungsanlagen begrenzt werden sollen und die dann zumindest für neue Öfen und Brenner bestehende Regelungslücken in europäischen Mitgliedsstaaten, wie Polen, schließen werden. Allerdings sollte die Bundesregierung im Rahmen ihrer Mitwirkungsmöglichkeiten sicherstellen, dass zukünftige europäische Regelungen nicht hinter den deutschen Standards für die Emissionen von Kleinefeuerungen in der 1. Verordnung zum Bundes-Immissionsschutzgesetz zurückbleiben oder diese nicht durch möglicherweise weniger anspruchsvolle europäische Regelungen verwässert werden.

Berlin wird dafür auch über den Bundesrat und über seine Mitwirkungsmöglichkeiten bei der Erarbeitung des europäischen Rechtsrahmens eintreten. Dies gilt auch für die an die Bundesregierung bzw. den europäischen Gesetzgeber gerichteten Forderungen, die in den Maßnahmen 2.2, 2.3, 2.9 und 4.1 hinsichtlich der Schadstoffemissionen von Fahrzeugen bzw. Maschinen in den Maßnahmen 2.18, 2.22 und 3.1 in Bezug auf den Verkehr und die Gebäudesanierung formuliert sind.

Im Gegensatz zu Feinstaub ist der Beitrag von Verursachern außerhalb des Berliner Stadtgebiets zu den Überschreitungen der Grenzwerte für Stickstoffdioxid (NO\(_2\)) vernachlässigbar gering. Wie in Kapitel 5.2 ausführlich dargestellt, ist der Berliner Kfz-Verkehr mit etwa 75 % für die verkehrsnahe NO\(_2\)-Konzentration in der Innenstadt verantwortlich, so dass die Verantwortung für Maßnahmen vorwiegend auf lokaler Ebene zu liegen scheint. Die hier dargelegte Liste geplanter Maßnahmen, von denen 26 direkt den Berliner Verkehr betreffen, trägt diesem Umstand Rechnung.

Trotzdem besteht zusätzlicher externer Handlungsbedarf insbesondere auf europäischer Ebene, denn der Schadstoffausstoß eines Kraftfahrzeugs hängt ganz wesentlich von den vom europäischen Gesetzgeber festgelegten und beschlossenen Abgasstandards ab. Denn die bisher im Rahmen der europäischen Abgasgesetzgebung vorgeschriebene stufenweise Absenkung der Stickoxidemissionen bis zum derzeit gültigen Abgasstandard Euro 5 erwies sich als zu wenig ambitioniert. Erst in der Praxis zeigte sich zudem, dass die angestrebten Emissionsminderungen für Stickoxide gerade im innerstädtischen Verkehr mit niedrigen Motor- und Abgastemperaturen oft nicht erreicht werden und der Ausstoß von direkt emittierten Stickstoffdioxid (NO\(_2\)) teilweise sogar stieg. Folglich sank auch die NO\(_2\)-Belastung an Straßen weniger als erwartet. Zukünftig sollte daher bei der Abgasgesetzgebung das Emissionsverhalten im innerstädtischen Verkehr stärker beachtet werden.

Auf die unzureichende Emissionsabsenkung und die Problematik der NO\(_2\)-Direktmissionen wurde schon im Luftreinhalteplan 2005-2010 mit der Forderung nach einer Verschärfung der EU-Emissionsstandards für Pkw und Lkw hingewiesen, bei der „auch das Problem des steigenden Anteils der NO\(_2\)-Emissionen am NOx-Ausstoß von Dieselfahrzeugen berücksichtigt werden“ sollte.

Das in der Euro-6-Norm steckende, beträchtliche Minderungspotenzial wird deshalb für die Einhaltung der NO₂-Grenzwerte bis 2015 nur dann einen merklichen Beitrag liefern, wenn die Automobilhersteller Euro-6-Fahrzeuge deutlich vor dem verpflichtenden Einführungsdatum im Jahr 2014 anbieten und durch verstärkte Kaufanreize in Form einer bundesweiten Förderung auf die Straße kommen.

Das in der Euro-6-Norm steckende, beträchtliche Minderungspotenzial wird deshalb für die Einhaltung der NO₂-Grenzwerte bis 2015 nur dann einen merklichen Beitrag liefern, wenn die Automobilhersteller Euro-6-Fahrzeuge deutlich vor dem verpflichtenden Einführungsdatum im Jahr 2014 anbieten und durch verstärkte Kaufanreize in Form einer bundesweiten Förderung auf die Straße kommen.

Das in der Euro-6-Norm steckende, beträchtliche Minderungspotenzial wird deshalb für die Einhaltung der NO₂-Grenzwerte bis 2015 nur dann einen merklichen Beitrag liefern, wenn die Automobilhersteller Euro-6-Fahrzeuge deutlich vor dem verpflichtenden Einführungsdatum im Jahr 2014 anbieten und durch verstärkte Kaufanreize in Form einer bundesweiten Förderung auf die Straße kommen.

Das in der Euro-6-Norm steckende, beträchtliche Minderungspotenzial wird deshalb für die Einhaltung der NO₂-Grenzwerte bis 2015 nur dann einen merklichen Beitrag liefern, wenn die Automobilhersteller Euro-6-Fahrzeuge deutlich vor dem verpflichtenden Einführungsdatum im Jahr 2014 anbieten und durch verstärkte Kaufanreize in Form einer bundesweiten Förderung auf die Straße kommen.

Das in der Euro-6-Norm steckende, beträchtliche Minderungspotenzial wird deshalb für die Einhaltung der NO₂-Grenzwerte bis 2015 nur dann einen merklichen Beitrag liefern, wenn die Automobilhersteller Euro-6-Fahrzeuge deutlich vor dem verpflichtenden Einführungsdatum im Jahr 2014 anbieten und durch verstärkte Kaufanreize in Form einer bundesweiten Förderung auf die Straße kommen.

Das in der Euro-6-Norm steckende, beträchtliche Minderungspotenzial wird deshalb für die Einhaltung der NO₂-Grenzwerte bis 2015 nur dann einen merklichen Beitrag liefern, wenn die Automobilhersteller Euro-6-Fahrzeuge deutlich vor dem verpflichtenden Einführungsdatum im Jahr 2014 anbieten und durch verstärkte Kaufanreize in Form einer bundesweiten Förderung auf die Straße kommen.

Letzteres ist Aufgabe der Bundesregierung, da dieser die notwendigen Instrumente wie die Kfz-Steuer, die Lkw-Maut und daraus finanzierbare zusätzliche Förderprogramme zur Verfügung stehen. Dabei sollten sich Förderungen nicht nur auf Euro-6-Fahrzeuge mit konventionellem Benzin- und Dieselantrieb beschränken, sondern auch Fahrzeuge mit alternativen Antriebskonzepten berücksichtigen. Wie in Maßnahme 2.2 und 2.3 angekündigt, wird Berlin dies über den Bundesrat mit entsprechenden Initiativen einfordern.

Wie eingangs erwähnt, besteht neben der späten Einführung ambitionierter Abgasstandards das Problem, dass gerade in verkehrsreichen Innenstadtstraßen mit häufigem Brems- und Anfahrvorgängen die NO₂-Emissionen von Diesel-Pkw bis zum aktuellen Abgasstandard ähnlich hoch liegen, wie bei den mehr als 10 Jahre alten Fahrzeugen der Euro-1-Norm. Bei einer Kfz-Flotte mit hohem Dieselanteil, wie er in Deutschland und ähnlich in Berlin vorherrscht, haben deshalb die NO₂-Emissionen in Innenstadtstraßen mit hohem Verkehrsaufkommen in den letzten Jahren nur wenig abgenommen. Nach der von der europäischen Abgasgesetzgebung vorgeschriebenen Typprüfung hätten die NO₂-Emissionen von Diesel-Pkw im Vergleich zu älteren Fahrzeugen der Euro-1-Norm jedoch um etwa 60 % niedriger sein sollen.

Ein derartiges Versagen der europäischen Abgasgesetzgebung gerade in verkehrsreichen städtischen Straßen, wo viele Menschen wohnen und hohen Schadstoffkonzentrationen ausgesetzt und deshalb die Luftqualitätsgrenzwerte einzuhalten sind, darf sich in Zukunft nicht wiederholen.

Auch wenn das Problem der mangelnden Berücksichtigung städtischer Fahrbedingungen bei der Zulassung neuer Kfz nunmehr auch von der Europäischen Kommission erkannt und eine Lösung angekündigt wurde, bleibt abzuwarten, ob die erste Generation der Euro-6-Dieselfahrzeuge die in sie gesetzte Erwartung hinsichtlich einer deutlichen Emissionsminderung auch und gerade im städtischen Fahrmodus erfüllen. Die Bundesregierung ist aufgerufen, bei der Erarbeitung der einschlägigen Regelungen auf EU-Ebene oder im Rahmen der UN-ECE entsprechend Einfluss zu nehmen.

In jedem Fall bleibt der Betrag der Flottendurchdringung durch Euro-6-Fahrzeuge bis 2015 begrenzt. Umso wichtiger ist die Ausschöpfung technischer Potenziale zur Nachrüstung eines Teils der bestehenden Kfz-Flotte. Zumindest bei Bussen und schweren Nutzfahrzeugen ist es technisch möglich, durch die Nachrüstung mit NO₂-Minderungssystemen eine wesentliche Senkung der Stickoxidemissionen zu erreichen. Leider unterblieb – wie in der Vergangenheit bei Partikelminderungssystemen – eine europaweite Festlegung der technischen Kriterien für den nachträglichen Einbau von Stickioxidminderungssystemen. Angesichts der europaweit notwendigen Anstrengungen zur Einhaltung der NO₂-Immissionsgrenzwerte sollte auch europaweit eine schnelle Markteinführung solcher Systeme erfolgen, was auch zu einer Senkung der Systemkosten führen und eine unter den Mitgliedsstaaten abgestimmte Einbauförderung erleichtern dürfte. Ohne eine Festlegung solcher technischen Kriterien ist die Maßnahme 2.7 nicht umsetzbar.

Die schon in der Vergangenheit bei PM₁₀ bestehende Diskrepanz zwischen der für die Einhaltung der Grenzwerte erforderlichen Reduktion der Emissionen und dem durch lokale
Maßnahmen und europäische (insbesondere technische) Regelungen realisierbaren Minderungspotenzials zeigt sich aus den genannten Gründen auch bei NO₂.

Wie begrenzt dieses Potenzial für den Berliner Ballungsraum ist, verdeutlichen die in Kapitel 8 beschriebenen dargelegten Reduktionsmargen lokaler Maßnahmen.

In Berlin beträgt die Lücke zwischen der NO₂-Belastung im Ausgangsjahr 2009 und dem Ende der verlängerten Einhaltungsfrist im Jahr 2015 im Durchschnitt über die Messpunkte an Hauptverkehrsstraßen ein gutes Drittel, wovon etwa die Hälfte durch die bereits eingeleiteten Maßnahmen, wie die Umsetzung der Umweltzone und der verkehrsplanerischen Zeile des Stadtentwicklungsplans Verkehr geschlossen werden kann. Um die verbleibende Lücke zu schließen, wurde das hier vorgelegte Bündel zusätzlicher Maßnahmen entwickelt.

Für seine wirksame Umsetzung bedarf es der Unterstützung durch die genannten flankierenden Maßnahmen auf europäischer und nationaler Ebene. Nur so kann die baldige Einhaltung der Grenzwerte für Feinstaub und Stickoxide überall im Stadtgebiet erreicht werden.
Abgeordnetenhaus Berlin Drucksachen Nr. 16/2772 und 16/3370: Eckpunkte für den Nahverkehrsplan 2010-2014. Beschluss vom 01.07.2010

BVG: persönliche Information zur Bus-Flotte. Berlin 2010

http://www.cnb-online.de/Vertragscontrolling.565.0.html (zuletzt abgerufen am 21. August 2012)

Diegmann, V.: Auswirkungen der neuen Emissionsfaktoren bei der Berechnung der Immis-
sionsbelastung. in: Bayerisches Landesamt für Umwelt (Hrsg.): Luftreinhalte-/Aktionspla-
nung – Maßnahmen gegen Feinstaub und Stickstoffoxide. Dokumentation der Fachtagung
vom 12.10.2010. Augsburg 2010

Düring, I., Hoffmann, T, Schmidt, W.: Kfz-Verkehrsanalyse in Berlin. im Auftrag der Senats-
verwaltung für Gesundheit, Umwelt und Verbraucherschutz Berlin. Radebeul 2010

Düring, I., Hoffmann, T., Nitzsche, E.: Auswertungen der Messungen des BLUME während
der verbesserten Straßenreinigung am Abschnitt Frankfurter Allee 86. im Auftrag der
Senatsverwaltung für Stadtentwicklung Berlin. Radebeul 2007

Düring, I., Lohmeyer, A., Pöschke, F.: Einfluss von verkehrsberuhigenden Maßnahmen auf
die PM$_{10}$-Belastung an Straßen. Berichte der Bundesanstalt für Straßenwesen – Verkehrs-
technik Heft V 189. Bergisch-Gladbach 2010

Düring, I., Zippack, L.: Auswertungen der Messungen des BLUME während der Abspülmaß-
nahme am Abschnitt Frankfurter Allee 86. im Auftrag der Senatsverwaltung für Stadtent-
wicklung Berlin. Radebeul 2004

Evans, R.: Congestion Charging – Central London Congestion Charging Scheme: ex-post
evaluation of the quantified impacts of the original scheme. Transport for London 2007

Follmer, R., Gruschwitz, D., Jesske, B., Quandt, S., Lenz, B., Nobis, C., Köhler, K., Mehlin, M.:
Mobilität in Deutschland 2008 – Ergebnisbericht. im Auftrag des Bundesministeriums für
Verkehr, Bau und Stadtentwicklung. Bonn und Berlin 2010
(zuletzt abgerufen am 21. August 2012)

Forum Die grüne Stadt (Hrsg.): Bäume und Pflanzen lassen Städte atmen – Schwerpunkt
Feinstaub. Düsseldorf 2008
http://www.die-gruene-stadt.de
(zuletzt abgerufen am 21. August 2012)

Greater London Authority: Clearing the air – The Mayor’s Air Quality Strategy. London 2010
(zuletzt abgerufen am 21. August 2012)

H. Helms, U. Lambrecht, W. Knörr: Aktualisierung des Modells TREMOD – Mobile Machinery
(TREMOD-MM). IFEU – Institut für Energie- und Umweltforschung Heidelberg GmbH,
Februar 2009

NFRAS: Handbuch Emissionsfaktoren des Straßenverkehrs. HBEFA Version 3.1. im Auftrag
von UBA Berlin, BAFU Bern, UBA Wien u.a. Bern 2010
http://www.hbefa.net
(zuletzt abgerufen am 21. August 2012)

IVU Umwelt GmbH: IMMIS$^{en/laut}$ – Handbuch zur Version 5.3. IVU UmweltGmbH. Freiburg
2011

Landesamt für Umwelt, Messungen und Naturschutz Baden-Württemberg (Hrsg.): Modellierung verkehrsbedingter Immissionen – Anforderungen an die Eingangsdaten, Grundlage HBEFA 3.1. Leitfaden. Karlsruhe 2010

http://www.ecorails.eu
(zuletzt abgerufen am 21. August 2012)

PTV AG: VISUM
http://vision-traffic.ptvgroup.com/de/produkte/ptv-visum/
(zuletzt abgerufen am 21. August 2012)

Senatsbeschluss „Radverkehrstrategie für Berlin“. Drucksache 15/3360, Abgeordnetenhaus Berlin 04.11.2004
http://www.stadtentwicklung.berlin.de/verkehr/politik_planung/rad/strategie/de/download.shtml
(zuletzt abgerufen am 21. August 2012)

http://www.stadtentwicklung.berlin.de/umwelt/klimaschutz/aktiv/vereinbarung/index.shtml
(zuletzt abgerufen am 21. August 2012)

http://www.stadtentwicklung.berlin.de/umwelt/luftqualitaet/de/luftreinhalteplan/download/umweltzone_1jahr_stufe2_bericht.pdf
(zuletzt abgerufen am 21. August 2012)

http://www.stadtentwicklung.berlin.de/umwelt/laerm/laermminderungsplanung/index.shtml
(zuletzt abgerufen am 21. August 2012)

http://www.stadtentwicklung.berlin.de/umwelt/umweltratgeber/de/bekannt/merkblatt.shtml#baustaub
(zuletzt abgerufen am 21. August 2012)
(zuletzt abgerufen am 21. August 2012)

http://www.stadtentwicklung.berlin.de/planen/basisdaten_stadtentwicklung/index.shtml
(zuletzt abgerufen am 21. August 2012)

Senatsverwaltung für Stadtentwicklung: Nahverkehrsplan Berlin 2010-2014. Entwurf Stand Dezember 2010

http://www.stadtentwicklung.berlin.de/planen/stadtentwicklungsplanung/de/gewerbe/news.shtml
(zuletzt abgerufen am 21. August 2012)

Senatsverwaltung für Stadtentwicklung: Stadtentwicklungsplan Verkehr (StEP Verkehr 2.0). Berlin 2011
http://www.stadtentwicklung.berlin.de/verkehr/politik_planung/step_verkehr/de/download.shtml
(zuletzt abgerufen am 21. August 2012)

http://www.stadtentwicklung.berlin.de/planen/stadtentwicklungsplanung/de/zentren/index.shtml
(zuletzt abgerufen am 21. August 2012)

http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/dd601_06.htm#Abb3
(zuletzt abgerufen am 21. August 2012)

(zuletzt abgerufen am 21. August 2012)

Stadt Aachen: Ordnungsbehördliche Verordnung über den Betrieb von Einzelraumfeuerungsanlagen für feste Brennstoffe (Aachener Festbrennstoffverordnung – FBStVO) vom 29.09.2010
http://www.aachen.de/DE/stadt_buerger/politik_verwaltung/stadtrecht/pdfs_stadtrecht/325.pdf
(zuletzt abgerufen am 21. August 2012)

Umweltbundesamt: Ausschreibungsempfehlung für gasbetriebene BHKW – Umweltaspekte. Dessau 2010
http://www.umweltbundesamt.de/produkte/beschaffung/energieversorgung/kraft-waerme-kopplung.html
(zuletzt abgerufen am 21. August 2012)

http://www.umweltbundesamt.de/emissionen/publikationen.htm
(zuletzt abgerufen am 21. August 2012)

Umweltbundesamt: Zentrales System Emissionen (ZSE), Emissionsdatenbank des Umweltbundesamtes mit dem Stand vom 08.06.2007. Dessau 2007

(zuletzt abgerufen am 21. August 2012)

Rechtsvorschriften

BImSchG – Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz – BImSchG) in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBl. I S. 1274)

1. BImSchV – Verordnung über kleine und mittlere Feuerungsanlagen vom 26. Januar 2010 (BGBl. I S. 38)

4. BImSchV – Verordnung über genehmigungsbedürftige Anlagen vom 2. Mai 2013 (BGBl. I S. 973)

Luftreinhalteplan 2011 bis 2017 für Berlin | Rechtsvorschriften

StVO – Straßenverkehrs-Ordnung vom 6. März 2013 (BGBl. I S. 367)

Berliner Ausschreibungs- und Vergabegesetz, 8. Juli 2010, GVBl. S. 399

LImSchG Bln – Landes-Immissionsschutzgesetz Berlin, GVBl. S. 735, ber. GVBl. 2006 S. 42

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarmschwelle</td>
<td>ist ein Wert, bei dessen Überschreitung bei kurzfristiger Exposition eine Gefahr für die menschliche Gesundheit besteht und bei dem die Mitgliedsstaaten umgehend Maßnahmen gemäß dieser Richtlinie ergreifen.</td>
</tr>
<tr>
<td>BHKW</td>
<td>kleines Block-Heizkraftwerk: Anlagen zur kombinierten Erzeugung von Wärme zum Heizen und elektrischem Strom meist in der Größenordnung bis etwa 50 kW elektrisch (teilweise bis 1 MW el).</td>
</tr>
<tr>
<td>BImSchG</td>
<td>Bundes-Immissionsschutzgesetz</td>
</tr>
<tr>
<td>BImSchV</td>
<td>Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes</td>
</tr>
<tr>
<td>BLUME</td>
<td>Berliner Luftgüte-Messnetz</td>
</tr>
<tr>
<td>BSR</td>
<td>Berliner Stadtreinigungsbetrie</td>
</tr>
<tr>
<td>BVG</td>
<td>Berliner Verkehrsbetrie</td>
</tr>
<tr>
<td>BWB</td>
<td>Berliner Wasserbetrie</td>
</tr>
<tr>
<td>CMA</td>
<td>Calcium-Magnesium-Acetat</td>
</tr>
<tr>
<td>CRT-Filter</td>
<td>Dieselpartikelfilter mit kontinuierlicher Regeneration, d.h. kontinuierlicher Entfernung der im Filter abgeschiedenen Rußpartikel durch Oxidation (Verbrennung) an einer katalytisch beschichteten Filteroberfläche. (CRT steht für continuous regeneration trap).</td>
</tr>
<tr>
<td>Detektoren</td>
<td>Infrarot-Empfangsgeräte, die über der Fahrbahn angebracht sind (zum Beispiel an einem Laternenpfahl) und Anzahl, Länge und Geschwindigkeit von Fahrzeugen erfassen können.</td>
</tr>
<tr>
<td>DPF</td>
<td>Dieselpartikelfilter für Kraftfahrzeuge zur Minderung des motorbedingten Partikelausstoß</td>
</tr>
<tr>
<td>DTV</td>
<td>Durchschnittliche tägliche Verkehrsstärke (Kraftfahrzeuge pro Tag)</td>
</tr>
<tr>
<td>EEV Standard</td>
<td>Enhanced Environmentally friendly Vehicle; Europäischer Abgasstandard</td>
</tr>
<tr>
<td>EMEP</td>
<td>ist das sog. „Cooperative Programme for Monitoring and Evaluation of the long-range transmissions of air pollutants in Europe“ der „Konvention zur großräumig grenzüber- schreitenden Luftverschmutzung“. In der unter der Europäischen Wirtschaftskommission</td>
</tr>
</tbody>
</table>
Luftreinhalteplan 2011 bis 2017 für Berlin | Glossar

Emissionen

sind Luftverunreinigungen, Geräusche, Licht, Strahlen, Wärme, Erschütterungen und ähnliche Erscheinungen, die von einer Anlage (z.B. Kraftwerk, Müllverbrennungsanlage, Hochöfen) ausgehen oder von Produkten (z.B. Treibstoffe, Kraftstoffzusätze) an die Umwelt abgegeben werden.

Emissionskataster

ist die räumliche Erfassung bestimmter Schadstoffquellen (Anlagen und Fahrzeuge). Das Emissionskataster enthält Angaben über Art, Menge, räumliche und zeitliche Verteilung und die Ausbreitungsbedingungen von Luftverunreinigungen. Hierdurch wird sichergestellt, dass die für die Luftverunreinigung bedeutsamen Stoffe erfasst werden.

Emissionswerte

FNP Flächennutzungsplan

Der Flächennutzungsplan ist der vorbereitende Bauleitplan in Berlin und wird vom Parlament beschlossen. Er gibt einen Überblick über die wichtigsten Planungsziele der Stadt und wird durch Änderungsverfahren ständig aktuell gehalten.

Genehmigungsbedürftige Anlagen

Hierunter werden Anlagen verstanden, die in besonderem Maße geeignet sind, schädliche Umwelteinwirkungen oder sonstige Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für die Nachbarschaft oder die Allgemeinheit herbeizuführen. Welche Anlagen genehmigungsbedürftig sind, ist im Anhang der 4. BImSchV festgelegt.

GFA Großfeuerungsanlagen

Grenzwert

ein Wert, der aufgrund wissenschaftlicher Erkenntnisse mit dem Ziel festgelegt wird, schädliche Auswirkungen auf die menschliche Gesundheit und/oder die Umwelt insgesamt zu vermeiden, zu verhüten oder zu verringern, und der innerhalb eines bestimmten Zeitraums erreicht werden muss und danach nicht überschritten werden darf.

HBEFA Handbuch für Emissionsfaktoren des Straßenverkehrs

Datenbank zur Berechnung des Schadstoffausstoßes von Kraftfahrzeugen im realen Straßenverkehr in Abhängigkeit von der Verkehrssituation und anderen Parametern.

HEAVEN „Healthier Environment through Abatement of Vehicle Emissions and Noise“

(für eine gesündere Umwelt durch Verminderung fahrzeugbedingter Schadstoff- und Lärmemissionen) war ein Forschungsprojekt kofinanziert durch das 5. Forschungsrahmenprogramm der EU.

Hintergrundniveau

ist die Schadstoffkonzentration in einem größeren Maßstab als dem Überschreitungsgebiet.

Hot-spots sind Brennpunkte an denen Menschen hohen Schadstoffbelastungen ausgesetzt sind, z.B. an verkehrsnahe Standorten.

IMMIScpb ist ein Rechenprogramm zur zeitlich und räumlich hochaufgelösten Berechnung von Schadstoffkonzentrationen an beliebigen Punkten in beidseitig bebauten Straßenschluchten.

IMMISem Teilmodul von IMMISluft zur Berechnung der Kfz Emissionen.

IMMISluft ist ein Rechenprogramm zur Bestimmung der Luftschadstoffemissionen und -immissionen in Innenstädten. Die Auspuffemission der Kraftfahrzeuge wird dabei mit dem Emissionsfaktoren-Handbuch des Umweltbundesamtes bestimmt, die Abrieb und Aufwirbelungsemissionen der Kraftfahrzeuge werden nach [Diegmann 2010] bestimmt. Die Berechnung der Schadstoffkonzentration in Straßenbelichtungen basiert auf IMMIScpb.

IMMISnet ist ein immissionsklimatologisches Ausbreitungsmodell zur Berechnung der Vorbelastung über Straßenbelichtungen oder an sonstigen Aufpunkten auf der Basis der Gaußschen Rauchfahnengleichung. In diesem Modell können die Jahresmittelwerte und Kurzzeitwerte der Konzentration aus beliebigen Punkte-, Linien und Flächenquellen eines Untersuchungsgebietes in der Größe von Berlin berechnet werden.

Immissionen sind auf Menschen (Tiere, Pflanzen, Boden, Wasser, Atmosphäre sowie Sachgüter) einwirkende Luftverunreinigungen, Geräusche, Erschütterungen, Licht, Wärme, Strahlen. Messgröße ist die Konzentration eines Schadstoffes in der Luft, bei Staub auch die Menge, die sich auf einer bestimmten Fläche pro Tag niederschlägt.

Immissionskataster Räumliche Darstellung der Immissionen innerhalb eines bestimmten Gebietes, unterteilt nach Spitzen- und Dauerbelastungen. Immissionskataster bilden eine wichtige Grundlage für Luftreinhaltepläne und andere Luftreinhaltemaßnahmen.

iQMobility Projekt zum Aufbau eines integrierten Qualitäts- und Mobilitätsmanagements im Straßenverkehr der Region Berlin-Brandenburg. Informationen unter www.iqmobility.de

LImSchG Landes-Immissionschutzgesetz Berlin

INfz leichtes Nutzfahrzeug zum Gütertransport unter 3,5 Tonnen zulässigem Gesamtgewicht

Lkw Lastkraftwagen/Nutzfahrzeug zum Güterverkehr über 3,5 Tonnen zulässigem Gesamtgewicht = schweres Nutzfahrzeug (sNfz)

LOR Lebensweltlich orientierten Räume

LOS Level of Service: Beschreibung der Verkehrsqualität in den vier Stufen „freier Verkehr“ (LOS1), dichter Verkehr (LOS2), gesättigter Verkehr (LOS3) und „stop&go“ (LOS4)

LSA Lichtsignalanlage, umgangssprachlich Ampel

Luft | die Luft der Troposphäre mit Ausnahme der Luft in Innenräumen.

LVwA | Landesverwaltungsamt Berlin

Mittelwert | ist das arithmetisches Mittel/der Durchschnitt aller beobachteten bzw. gemessenen Werte und ist ein Lagemaß für eine statistische Häufigkeitsverteilung. Einzelne extreme Ausreißerwerte können dieses Maß aber erheblich beeinflussen.

MIV | Motorisierter Individualverkehr

Modal-split | ist die Aufteilung der Verkehrsmengen auf die einzelnen Verkehrsträger oder -arten, wie z.B. Fußgänger, Radverkehr, Öffentlicher Personen-Nahverkehr (ÖPNV) und motorisierter Individualverkehr (MIV).

nicht genehmigungsbedürftige Anlage | sind alle Anlagen, die nicht in der 4. BlmSchV aufgeführt sind oder für die in der 4. BlmSchV bestimmt ist, dass für sie eine Genehmigung nicht erforderlich ist.

NN | Normalnull, Abkürzung für Meereshöhe

ÖPNV | Öffentlicher Personen-Nahverkehr

ÖV | Öffentlicher Verkehr: öffentlicher Personennah- und fernverkehr

PAREST | Partikel-Reduktions-Strategie (UBA-Projekt: UFOPLAN-Vorhaben 206 43 200/01)

PLR | Planungsräume

PM$_{10/2,5}$ | die Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 10 µm oder 2,5 µm eine Abscheidewirksmkeit von 50 % aufweist. Der Feinstaubanteil im Größenbereich unter 10 µm ist gesundheitlich von besonderer Bedeutung, weil Partikel dieser Größe mit vergleichsweise hoher Wahrscheinlichkeit vom Menschen eingeatmet und in die tieferen Atemwege transportiert werden.

RCG | Regionales REM-Calgrid-Modell: ein vom Umweltbundesamt im Rahmen eines Forschungsvorhabens entwickeltes Modellsystem, das die Berechnung der großräumigen regionalen PM$_{10}$-Hintergrundbelastung und des urbanen Hintergrundniveaus ermöglicht.

RUBIS | Ruß- und Benzol-Immissions-Sammler ist ein kombinierter Aktiv- und Passivsammler zur Ermittlung von Wochenmittelwerten von Benzol, Ruß und Stickstoffdioxid.

Ruß | Feine Kohlenstoffteilchen oder Teilchen mit hohem Kohlenstoffgehalt, die bei unvollständiger Verbrennung entstehen.

Schadstoff | jeder vom Menschen direkt oder indirekt in die Luft emittierte Stoff, der schädliche Auswirkungen auf die menschliche Gesundheit und/oder die Umwelt insgesamt haben kann.
Schwebstaub sind feste Teilchen, die abhängig von ihrer Größe nach Grob- und Feinstaub unterteilt werden. Während die Grobstäube nur für kurze Zeit in der Luft verbleiben und dann als Staubniederschlag zu Boden fallen, können Feinstäube längere Zeit in der Atmosphäre verweilen und dort über große Strecken transportiert werden. Das wichtigste Unterscheidungsmerkmal der Partikel ist die Teilchengröße. Schwebstaub hat eine Teilchengröße von etwa 0,001 bis 15 µm. Unter 10 µm Teilchendurchmesser wird er als PM$_{10}$, unter 2,5 µm als PM$_{2.5}$ und unter 1 µm als PM$_{1}$ bezeichnet. Staub stammt sowohl aus natürlichen wie auch aus von Menschen beeinflussten Quellen. Staub ist abhängig von der Größe und der ihm anhaftenden Stoffe mehr oder weniger gesundheitsgefährdend.

SCR selektive katalytische Reduktion (chemische Umwandlung) von Stickstoffoxiden zu molekularem Stickstoff (N$_2$), meist unter Verwendung von Harnstoff als Reduktionsmittel. Dient sowohl in Großfeuerungsanlagen als auch in Kraftfahrzeugen der Minderung der Stickoxidemissionen.

SenStadtUm Senatsverwaltung für Stadtentwicklung und Umwelt

SenWiTechForsch Senatsverwaltung für Wirtschaft, Technologie und Forschung

sNfz schweres Nutzfahrzeug: Kraftfahrzeug zum Gütertransport über 3,5 Tonnen zulässigem Gesamtgewicht (Lkw)

SPNV Schienenpersonennahverkehr

Stand der Technik ist nach dem BImSchG ein Kriterium zur Beurteilung der Frage, ob eine Maßnahme zur Begrenzung von Emissionen praktisch und nicht erst nach Durchführung langwieriger Entwicklungsvorhaben umsetzbar ist. Bei der Bestimmung des Standes der Technik sind insbesondere vergleichbare Verfahren, Einrichtungen oder Betriebsweisen heranzuziehen, die im Betrieb mit Erfolg erprobt worden sind.

Stick(stoff)oxide abgekürzt NO$_x$, bezeichnet die Summe von Stickstoffmonoxid und Stickstoffdioxid, ermittelt durch die Addition als Teile auf 1 Mrd. Teile und ausgedrückt als Stickstoffdioxid in µg/m3.

STVG Straßenverkehrsgesetz

STVO Straßenverkehrsordnung

TA Luft ist die Technische Anleitung zur Reinhaltung der Luft, eine Verwaltungsvorschrift zum BImSchG. Sie besteht aus vier Teilen: Teil 1 regelt den Anwendungsbereich, Teil 2 enthält allgemeine Vorschriften zur Reinhaltung der Luft, Teil 3 konkretisiert die Anforderungen zur Begrenzung und Feststellung der Emissionen, und Teil 4 betrifft die Sanierung von bestimmten genehmigungsbedürftigen Anlagen (Altanlagen).

TELLUS EU-Forschungsprojekt „Transport & Environment Alliance for Urban Sustainability“ des 5. Forschungsrahmenprogramms der EU
TÖB Träger öffentlicher Belange

TUT „Tausend Umwelt Taxen für Berlin“, Projekt des Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit.

UBA Umweltbundesamt

Umweltverbund unter dem Begriff Umweltverbund werden im verkehrlichen Zusammenhang der öffentliche Personenverkehr, der Fußgängerverkehr und der Radverkehr zusammengefasst.

VLB Verkehrslenkung Berlin

Wert ist die Konzentration eines Schadstoffs in der Luft oder die Ablagerung eines Schadstoffs auf bestimmten Flächen in einem bestimmten Zeitraum.

WHO World Health Organization

Zusatzbelastung die Zusatzbelastung ist der Anteil der an einem Straßenabschnitt auftretenden Luftbelastung, der ausschließlich vom lokalen Kraftfahrzeugverkehr auf diesem Abschnitt erzeugt wird. Er lässt sich als Differenz aus der an der Straße gemessenen Schadstoffkonzentration und der im städtischen Hintergrund gemessenen Konzentration berechnen.
Stoffe, Einheiten und Messgrößen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaP</td>
<td>Benzo[a]pyren</td>
</tr>
<tr>
<td>NH₄</td>
<td>Ammonium</td>
</tr>
<tr>
<td>NO₃</td>
<td>Nitrat</td>
</tr>
<tr>
<td>NO₂</td>
<td>Stickstoffdioxid</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Stickstoffoxide (Summe aus NO + NO₂)</td>
</tr>
<tr>
<td>SO₄</td>
<td>Sulfat</td>
</tr>
<tr>
<td>µg/m³</td>
<td>Mikrogramm (1millionstel Gramm) pro Kubikmeter</td>
</tr>
<tr>
<td>kg/a</td>
<td>Kilogramm pro Jahr</td>
</tr>
<tr>
<td>t/a</td>
<td>Tonnen pro Jahr</td>
</tr>
<tr>
<td>Kd/a</td>
<td>Kelvin Tag pro Jahr (Heizgradsumme)</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>Nr.</td>
<td>Standort</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>Marienfelde Schichauweg 60 (WaBoLu)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>Grunewald Jagen 91</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>077</td>
<td>Buch Wiltbergstraße 50 (Klinikum)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>085</td>
<td>Friedrichshagen Müggelseedamm 307-310 (Wasserwerk)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Frohnau Jägerstieg 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Wedding Amrumer/Limburger Straße</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>Schöneberg Belziger Straße 52</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

innerstädtischer Hintergrund
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Standort</th>
<th>Koordinaten</th>
<th>Messkomponenten</th>
<th>Beginn</th>
<th>Ende</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>Neukölln Nansenstraße 42</td>
<td>13° 25' 51,1'' E; 52° 29' 22,0'' N</td>
<td>NO, NO₂, O₃, PM₁₀, PM₂,₅, Benzol, Pb,Cd,As,Ni, BaP</td>
<td>01.03.1986</td>
<td>aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SO₂, CO</td>
<td>01.03.1986</td>
<td>19.01.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.03.1986</td>
<td>30.06.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.01.2004</td>
<td>20.07.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.01.2005</td>
<td>01.07.2005</td>
</tr>
<tr>
<td>171</td>
<td>Mitte Brückenstraße 6</td>
<td>13° 25' 7,8'' E; 52° 30' 49,0'' N</td>
<td>NO, NO₂, PM₁₀, PM₂,₅</td>
<td>01.01.2003</td>
<td>aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SO₂, CO</td>
<td>01.01.2003</td>
<td>01.01.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.01.2003</td>
<td>27.01.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.01.2003</td>
<td>30.04.2008</td>
</tr>
<tr>
<td>282</td>
<td>Karlshorst Rheingoldstraße geg. 36/37</td>
<td>13° 31' 46,2'' E; 52° 29' 7,0'' N</td>
<td>NO, NO₂, SO₂, CO</td>
<td>01.07.1999</td>
<td>aktiv</td>
</tr>
<tr>
<td>115</td>
<td>Hardenbergplatz</td>
<td>13° 19' 58,7'' E; 52° 30' 23,8'' N</td>
<td>NO, NO₂, PM₁₀, Pb,Cd,As,Ni, BaP</td>
<td>01.01.2004</td>
<td>aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO, Benzol</td>
<td>01.01.2004</td>
<td>30.04.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.01.2004</td>
<td>28.12.2007</td>
</tr>
<tr>
<td>117</td>
<td>Steglitz Schildhornstraße 76</td>
<td>13° 19' 12,0'' E; 52° 27' 54,0'' N</td>
<td>NO, NO₂, PM₁₀, CO, Benzol, BaP</td>
<td>01.11.1994</td>
<td>aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SO₂</td>
<td>01.11.1994</td>
<td>18.01.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.11.1994</td>
<td>01.07.2005</td>
</tr>
<tr>
<td>124</td>
<td>Mariendorf Mariendorfer Damm 148</td>
<td>13° 23' 15,9'' E; 52° 26' 17,2'' N</td>
<td>NO, PM₁₀</td>
<td>01.01.2009</td>
<td>aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.01.2009</td>
<td>01.01.2009</td>
</tr>
<tr>
<td>143</td>
<td>Neukölln Silbersteinstraße 1</td>
<td>13° 26' 30,0'' E; 52° 28' 3,0'' N</td>
<td>NO, NO₂, PM₁₀, CO</td>
<td>01.05.1996</td>
<td>aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.05.1996</td>
<td>01.01.2005</td>
</tr>
<tr>
<td>174</td>
<td>Friedrichshain Frankfurter Allee 86 b</td>
<td>13° 28' 11,8'' E; 52° 30' 50,7'' N</td>
<td>NO, NO₂, PM₁₀, PM₂,₅, Benzol, SO₂, CO, Pb,Cd,As,Ni, BaP</td>
<td>01.09.1993</td>
<td>aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.09.1993</td>
<td>01.04.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.09.1993</td>
<td>01.01.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.09.1993</td>
<td>01.09.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.09.1993</td>
<td>01.09.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.01.2005</td>
<td>01.07.2005</td>
</tr>
<tr>
<td>220</td>
<td>Neukölln Karl-Marx-Straße 77</td>
<td>13° 26' 2,3'' E; 52° 29' 54,0'' N</td>
<td>NO, NO₂, PM₁₀, CO</td>
<td>01.08.1993</td>
<td>aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.08.1993</td>
<td>01.01.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01.08.1993</td>
<td>16.02.2004</td>
</tr>
<tr>
<td>Straße</td>
<td>PKW</td>
<td>LNfz</td>
<td>SNfz</td>
<td>Linienbus</td>
<td>Reisebus</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Potsdamer Str.</td>
<td>43</td>
<td>9</td>
<td>17</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>A100</td>
<td>50</td>
<td>17</td>
<td>31</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Friedrichstr.</td>
<td>53</td>
<td>13</td>
<td>18</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Wilhelmstr.</td>
<td>40</td>
<td>9</td>
<td>10</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>Dorotheenstr.</td>
<td>47</td>
<td>9</td>
<td>1</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Potsdamer Str.</td>
<td>50</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Leipziger Str.</td>
<td>54</td>
<td>12</td>
<td>15</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Mariendorfer Damm</td>
<td>59</td>
<td>12</td>
<td>23</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Elsenstr.</td>
<td>44</td>
<td>10</td>
<td>20</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Leipziger Str.</td>
<td>53</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Alt-Moabit</td>
<td>60</td>
<td>14</td>
<td>20</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Kolonnenstr.</td>
<td>51</td>
<td>11</td>
<td>10</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Karl-Marx-Str.</td>
<td>62</td>
<td>13</td>
<td>17</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Hauptstr.</td>
<td>44</td>
<td>10</td>
<td>13</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Frankfurter Allee</td>
<td>61</td>
<td>13</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Französische Str.</td>
<td>53</td>
<td>12</td>
<td>21</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Glinkastr.</td>
<td>54</td>
<td>14</td>
<td>27</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Karl-Marx-Str.</td>
<td>54</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Schlesische Str.</td>
<td>50</td>
<td>11</td>
<td>18</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Budapester Str.</td>
<td>59</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tempelhofer Damm</td>
<td>62</td>
<td>13</td>
<td>24</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Abbildung A-2: Anteile der Fahrzeugarten an der verkehrsbedingten PM$_{10}$-Zusatzbelastung an ausgewählten Hauptverkehrsstraßen in % für das Jahr 2015

<table>
<thead>
<tr>
<th>Straße</th>
<th>PKW</th>
<th>LNFz</th>
<th>SNFz</th>
<th>Linienbus</th>
<th>Reisebus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potsdamer Str.</td>
<td>53</td>
<td>8</td>
<td>20</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>A100</td>
<td>51</td>
<td>11</td>
<td>36</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Friedrichstr.</td>
<td>58</td>
<td>10</td>
<td>22</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Wilhelmstr.</td>
<td>52</td>
<td>8</td>
<td>13</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Dorotheenstr.</td>
<td>59</td>
<td>8</td>
<td>2</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Potsdamer Str.</td>
<td>60</td>
<td>9</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Leipziger Str.</td>
<td>62</td>
<td>10</td>
<td>17</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Mariendorfer Damm</td>
<td>63</td>
<td>10</td>
<td>23</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Elsenstr.</td>
<td>54</td>
<td>9</td>
<td>22</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Leipziger Str.</td>
<td>61</td>
<td>10</td>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Alt-Moabit</td>
<td>63</td>
<td>10</td>
<td>23</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Kolonnenstr.</td>
<td>59</td>
<td>9</td>
<td>12</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Karl-Marx-Str.</td>
<td>67</td>
<td>11</td>
<td>18</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hauptstr.</td>
<td>52</td>
<td>9</td>
<td>17</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Frankfurter Allee</td>
<td>67</td>
<td>12</td>
<td>17</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Französische Str.</td>
<td>58</td>
<td>9</td>
<td>24</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Glinkastr.</td>
<td>58</td>
<td>10</td>
<td>29</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Karl-Marx-Str.</td>
<td>61</td>
<td>10</td>
<td>17</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Schlesische Str.</td>
<td>59</td>
<td>9</td>
<td>20</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Budapester Str.</td>
<td>68</td>
<td>10</td>
<td>13</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Tempelhofer Damm</td>
<td>65</td>
<td>11</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Straße</td>
<td>PKW</td>
<td>LNfz</td>
<td>SNfz</td>
<td>Linienbus</td>
<td>Reisebus</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Potsdamer Str.</td>
<td>41</td>
<td>32</td>
<td>12</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>A100</td>
<td>42</td>
<td>32</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Friedrichstr.</td>
<td>46</td>
<td>36</td>
<td>11</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Wilhelmstr.</td>
<td>41</td>
<td>32</td>
<td>7</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Dorotheenstr.</td>
<td>47</td>
<td>31</td>
<td>4</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Potsdamer Str.</td>
<td>46</td>
<td>34</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Leipziger Str.</td>
<td>47</td>
<td>36</td>
<td>9</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Mariendorfer Damm</td>
<td>49</td>
<td>35</td>
<td>14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Elsenstr.</td>
<td>42</td>
<td>33</td>
<td>13</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Leipziger Str.</td>
<td>47</td>
<td>37</td>
<td>8</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Alt-Moabit</td>
<td>49</td>
<td>37</td>
<td>12</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Kolonnenstr.</td>
<td>47</td>
<td>34</td>
<td>6</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Karl-Marx-Str.</td>
<td>50</td>
<td>37</td>
<td>8</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Hauptstr.</td>
<td>43</td>
<td>33</td>
<td>9</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Frankfurter Allee</td>
<td>50</td>
<td>38</td>
<td>9</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Französische Str.</td>
<td>46</td>
<td>36</td>
<td>13</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Glinkastr.</td>
<td>44</td>
<td>38</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Karl-Marx-Str.</td>
<td>47</td>
<td>36</td>
<td>8</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Schlesische Str.</td>
<td>45</td>
<td>35</td>
<td>12</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Budapester Str.</td>
<td>50</td>
<td>35</td>
<td>7</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Tempelhofer Damm</td>
<td>50</td>
<td>37</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Abbildungen

Abbildung 1.1: Jahresmittelwerte im Jahr 2009, links für Feinstaub (PM$_{10}$), rechts für Stickstoffdioxid. Rote und gelbe Punkte kennzeichnen Messstationen mit Überschreitungen der entsprechenden Immissionsgrenzwerte10 __________________________ 25

Abbildung 2.1: Berlin und seine Bezirke sowie Einwohnerdichte nach statistischen Gebieten (2009)14 __ 28
Abbildung 2.3: Häufigkeit von Temperaturinversionen in Abhängigkeit von der Windrichtung ___ 32
Abbildung 2.4: Flächenanteile nach Nutzungsarten in Berlin16 (Gesamtfläche: 892 km2) im Jahr 2009 _______________________________ 34
Abbildung 2.5: Verteilung der Flächennutzung in Berlin 200917 ___ 35
Abbildung 2.6: Relative Veränderung der Verkehrsmengen von 2002 bis 2010 an 36 ausgewählten Dauerzählstellen für den gesamten Kfz-Verkehr (Pkw + Lkw) und den Lkw-Verkehr _______________________________ 38
Abbildung 2.7: Verkehrsmittelwahl der Berliner Wohnbevölkerung im Personenverkehr im Jahr 200821 __ 40

Abbildung 3.1: Lage der Messstandorte in Berlin 2010 __ 43
Abbildung 3.2: Schema der räumlichen Ausdehnung der in Berlin für die Luftreinhalteplanung angewandten Ausbreitungsmodelle sowie deren Auflösung ___ 44
Abbildung 3.3: Langjähriger Trend der Stickstoffdioxid- und Stickstoffmonoxidwerte in Berlin ___ 46
Abbildung 3.4: Langjähriger Trend der PM$_{10}$-Konzentrationen in Berlin __ 48
Abbildung 3.5: Klassifikation der Überschreitungen des Tagesgrenzwertes für die Jahre 2005 bis 2010 nach der Höhe über 50 µg/m³ (blaue Linie: 35 Tage: Kurzzeitgrenzwert für PM$_{10}$) MC = Mess-Container=Stationsnummer ___ 51
Abbildung 3.6: Langjähriger Trend der PM$_{2.5}$-Konzentration in Berlin __ 52
Abbildung 3.7: Städtische Hintergrundkonzentrationen für Stickstoffdioxid im Jahr 2009 __ 55
Abbildung 3.8: Berechnete NO$_2$-Jahresmittelwerte im Hauptverkehrsstraßennetz 2009 ______________ 55
Abbildung 3.9: Städtische Hintergrundkonzentrationen für Feinstaub PM$_{10}$ im Jahr 2009 _______________________________ 57
Abbildung 3.10: Berechnete PM$_{10}$-Jahresmittelwerte im Hauptstraßennetz von Berlin 2009 __ 57
Abbildung 3.11: Städtische Hintergrundkonzentrationen für Feinstaub PM$_{2.5}$ im Jahr 2009 __ 59
Abbildung 3.12: Berechnete PM$_{2.5}$-Jahresmittelwerte im Hauptstraßennetz von Berlin 2009 __ 59
Abbildung 3.14: Anzahl der Planungsräume nach kombinierter Luftbelastung durch Feinstaub und NO$_2$ und sozialem Entwicklungindex im Jahre 2009 __ 63
Abbildung 3.15: Anteil der Bevölkerung in Prozent nach kombinierter Luftbelastung durch Feinstaub und NO$_2$ und nach sozialem Entwicklungindex im Jahre 2009 __ 63

Abbildung 3.16: Berechnete Stickemissionen genehmigungsbedürftiger Anlagen in Berlin 2008/2009 __ 66
Abbildung 4.3: Veränderung der insgesamt beheizten Fläche und der Heizungsart bei Wohn- und Gewerberäumen von 1990 bis 2009
Abbildung 4.4: Stickoxidemissionen aus Hausbrand in Berlin 2009
Abbildung 4.5: Feinstaubemissionen aus Hausbrand in Berlin 2009
Abbildung 4.6: Verkehrsbelastung im Hauptverkehrsstraßennetz im Jahr 2009
Abbildung 4.7: Stickoxidemissionen des gesamten Straßenverkehrs in Berlin 2009
Abbildung 4.8: Feinstaub (PM_{10})-Emissionen des gesamten Straßenverkehrs in Berlin 2009
Abbildung 4.9: Anteile verschiedener Verursacher an den Stickoxidemissionen in Berlin 2009
Abbildung 4.10: Anteile verschiedener Verursacher an den Feinstaubemissionen (PM_{10}) in Berlin 2009
Abbildung 4.11: Räumliche Verteilung der Stickoxidemissionen aus allen Quellgruppen in Berlin 2009
Abbildung 4.12: Räumliche Verteilung der Feinstaub (PM_{10})-Emissionen aller Quellgruppen in Berlin 2009
Abbildung 4.14: Räumliche Verteilung der Feinstaub (PM_{10})-Emissionen in Berlin und Umgebung aus der PAREST-Emissionsdatenbank für das Jahr 2005

Abbildung 5.1: Schema der Verteilung der Luftbelastung nach Herkunftsregion in Berlin und Umgebung am Beispiel Feinstaub PM_{10}
Abbildung 5.2: Vergleich meteorologischer Parameter für die Jahre 2005-2010, die einen Einfluss auf Emission, Transport und Verdünnung von Luftschadstoffen haben (für Windrichtung an windschwachen Tagen liegt für 2005 keine Auswertung vor)
Abbildung 5.3: Prozentuale Häufigkeit der Windrichtungen (alle Windgeschwindigkeiten) in den Jahren 2005 bis 2010 an der Messstelle des Meteorologischen Instituts der FU-Berlin
Abbildung 5.4: Mittlere berechnete Quellanteile an der Stickstoffdioxidbelastung an 27 Hauptverkehrsstraßen in Berlin im Jahr 2009
Abbildung 5.5: Berechnete Verursacheranteile der NO_{2}-Belastung an 27 ausgewählten Straßenabschnitten für das Jahr 2009
Abbildung 5.6: Berechnete Quellanteile an der PM_{10}-Belastung an Hauptverkehrsstraßen in Berlin aus dem Mittel über 27 Straßenabschnitte im Jahr 2009
Abbildung 5.7: PM_{10}-Verursacheranteile für 27 ausgewählte Straßenabschnitte in Berlin im Jahr 2009 (aus Modellrechnung)
Abbildung 5.8: Gegenüberstellung der verkehrsnahen PM_{10}-Belastung in der Innenstadt von Berlin und des städtischen Eigenanteils auf der Basis von Tagesmittelwerten
Abbildung 5.9: Mittlere Beiträge der Quellregionen in µg/m³ an der Messstation Frankfurter Allee an Tagen mit Überschreitungen des Tagesgrenzwertes von 50 µg/m³ für die Jahre 2006 bis 2010
Abbildung 5.10: Verteilung der PM_{10}-Konzentration nach Herkunftsregion mit der Windrichtung an der Messstation Frankfurter Allee für die Jahre 2005 bis 2010
Abbildung 5.11: Rückwärtsstrajektorien zur Bestimmung der Herkunft der nach Berlin einströmenden Luftmassen am Beispiel des 10.02.2010 (PM_{10}-Konzentration am Stadtrand: 101 µg/m³)
Abbildung 5.12: Verteilung der deutschlandweiten PM_{10}-Konzentration am Beispiel des 10.02.2010 [Quelle: Umweltbundesamt]
Abbildung 5.13: Beitrag des grenzüberschreitenden Ferntransports zu der Überschreitungshäufigkeit des Tagesgrenzwertes an verkehrsnahen Messstationen in Berlin
Abbildung 5.14: Chemische Zusammensetzung des PM_{10} an der Verkehrsstation Frankfurter Allee in Abhängigkeit von der Höhe der PM_{10}-Konzentration für die Jahre 2006 bis 2010
Abbildung 5.15: PM_{10}-Konzentrationsspitzen durch Bautätigkeit neben der Station Mariendorfer Damm in der Zeit vom 19.07. bis 26.07.2009 (1/2-h-Werte)
Abbildung 5.16: Mittlere Quellbeiträge nach Quellregion für PM$_{2,5}$ an der Frankfurter Allee im Jahr 2007
Abbildung 5.17: Jahresgang der BaP-Konzentration im Jahr 2010

Abbildung 6.1: Entwicklung der Flottenzusammensetzung der Berliner Linienbusse der BVG
Abbildung 6.3: Entwicklung der Pkw-Verkehrsmengen bis 2010 relativ zum Jahr 2002 an 36 ausgewählten Verkehrszählstellen
Abbildung 6.4: Gebiete mit Parkraumbewirtschaftung im Jahr 2010
Abbildung 6.5: iQmobility-Feldversuchsstrecke in der Leipziger Straße in Berlin-Mitte (rote Pfeile = Verkehrszählleinrichtungen, blauer Pfeil = Messbus)
Abbildung 6.6: Tagesgang der NO$_x$-Emissionen in Abhängigkeit von der Verkehrssituation in der Leipziger Straße am Montag bei Tempo 50 mit verkehrsabhängiger Lichtsignalkoordinierung in Fahrtrichtung Osten zwischen Potsdamer Platz und Wilhelmstraße im Projekt iQMobility 2007
Abbildung 6.7: Zulässige Höchstgeschwindigkeiten im übergeordneten Straßenetz in Berlin

Abbildung 7.1: Städtische Hintergrundkonzentration für NO$_2$ im Jahr 2015
Abbildung 7.2: Städtische Hintergrundkonzentration für NO$_2$ im Jahr 2020
Abbildung 7.3: NO$_2$-Jahresmittelwerte im Hauptstraßennetz im Jahr 2015
Abbildung 7.4: NO$_2$-Jahresmittelwerte im Hauptstraßennetz im Jahr 2020
Abbildung 7.5: Lage der ausgewählten Hot-Spots für weitere Analysen für das Jahr 2015
Abbildung 7.6: Städtische Hintergrundkonzentration für PM$_{10}$ im Jahr 2015
Abbildung 7.7: Städtische Hintergrundkonzentration für PM$_{10}$ im Jahr 2020
Abbildung 7.8: PM$_{10}$-Jahresmittelwerte im Hauptstraßennetz im Jahr 2015
Abbildung 7.9: PM$_{10}$-Jahresmittelwerte im Hauptstraßennetz im Jahr 2020

Abbildung 8.1: Wirkung verschiedener Maßnahmen auf die Kfz-Emissionen in Berlin im Vergleich zum Trendszenario 2015
Abbildung 8.2: Länge der Straßen mit Überschreitungen des NO$_2$-Grenzwertes und Zahl der betroffenen Anwohnerinnen und Anwohner für die Trendentwicklung und bei Umsetzung der Maßnahmenbündel im Jahr 2015
Abbildung 8.3: Länge der Straßen mit Überschreitungen des PM$_{10}$-Grenzwertes (Jahresmittel > 32 µg/m³) und Zahl der betroffenen Anwohnerinnen und Anwohner für die Trendentwicklung und bei Umsetzung der Maßnahmenbündel im Jahr 2015

Abbildung 9.1: Brandenburgische Straße, Hohenzollerndamm bis Berliner Straße: links Straßenaufteilung vorher, rechts nach Durchführung der Maßnahme [Lärmaktionsplan Berlin 2008]

Abbildung A-1: Anteile der Fahrzeugarten an der verkehrsbedingte NO$_x$-Zusatzbelastung an ausgewählten Hauptverkehrsstraßen in % für das Jahr 2015
Abbildung A-2: Anteile der Fahrzeugarten an der verkehrsbedingte PM$_{10}$-Zusatzbelastung an ausgewählten Hauptverkehrsstraßen in % für das Jahr 2015
Abbildung A-3: Anteile der Fahrzeugarten an der verkehrsbedingte Zusatzbelastung motorbedingter Partikel an ausgewählten Hauptverkehrsstraßen in % für das Jahr 2015
Tabellen

Tabelle 1.1: Grenzwerte für die Luftqualität für ausgewählte Luftschadstoffe

Auszug aus Tabellen 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10

Tabelle 7.1: Entwicklung der Fahrleistungen für 2015 und 2020 im Vergleich zum Jahr 2009

Tabelle 7.2: Anteile der Fahrzeuge mit dem Abgasstandard Euro 6 in den einzelnen Fahrzeugkategorien

Tabelle 7.4: Verkehrsdaten und NO\textsubscript{2}-Werte für ausgewählten Straßenabschnitte für 2015

Tabelle 7.5: Anteile der Fahrzeugarten an der kehrsbedingten NO\textsubscript{2}-Zusatzbelastung in % im Mittel über alle Hot-Spots sowie die minimalen und maximalen Anteile je Fahrzeugart für 2015

Tabelle 7.6: PM\textsubscript{10} - und Dieselrußkonzentrationen an ausgewählten Straßenabschnitten für 2015