Anpassung an die Folgen des Klimawandels in Berlin – AFOK
Teil I: Hauptbericht
Auftraggeber
Senatsverwaltung für Stadtentwicklung und Umwelt Berlin

Auftragnehmer
Potsdam Institut für Klimafolgenforschung e.V. (PIK)
Telegrafenberg
14473 Potsdam

Dr. Fritz A. Reusswig
Dr. Matthias K. B. Lüdeke
Dipl.-Volksw. Wiebke Lass
Dipl.-Phys. Carsten Walther

Forschungskonsortium
bgmr Landschaftsarchitekten
Prager Platz 6
10779 Berlin

V-Prof. Dr. Carlo Becker
M.Sc. Anna Neuhaus

Luftbild Umwelt Planung (LUP)
Große Weinmeisterstraße 3a
14469 Potsdam

Dipl. Ing. Gregor Weyer
Dipl. Ing. Leilah Haag
Dipl. Geoök. Antje Knorr
Dipl.-Ing. Christiane Pankoke

Institut für ökologische Wirtschaftsforschung (IÖW)
Potsdamer Straße 105
10785 Berlin

Dr. Jesko Hirschfeld
Dipl.-Forstw., M.Sc. Johannes Rupp

L.I.S.T. Stadtentwicklungsgeellschaft mbH
Liebenwalder Straße 2-3
13347 Berlin

Dipl. Ing. Susanne Walz
B.A., M.Sc. Eva Wiesemann

Förderung
Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB)
Stresemannstraße 128 – 130
10117 Berlin
Danksagung

Unser Dank gilt daher in erster Linie allen im Laufe des Projektes kontaktierten Gesprächspartnerinnen und Gesprächspartnern: Zahlreiche Personen aus dem Unternehmenssektor, den Verbänden, aus zivilgesellschaftlichen Organisationen, verschiedenen Bereichen der Berliner Verwaltung (Senat und Bezirke) und aus der Wissenschaft haben unsere Fragen beantwortet. Besonders gedankt sei den Teilnehmerinnen und Teilnehmern der AFOK-Workshops.

Wir danken auch der auftraggebenden Senatsverwaltung für Stadtentwicklung und Umwelt (Sonderreferat Klimaschutz und Energie, SRKE) für die organisatorische und fachliche Unterstützung unserer Arbeit.

Dank gebührt den PIK-Mitarbeiter/-innen Frau Dr. cand. Eva Eichenauer und Herrn Dr. cand. Lutz Meyer-Ohlendorf für die Unterstützung der Erstellung des Manuskripts sowie Frau Dorit Schneider für das Lektorat (www.vergilbte-seiten.de).

Selbstverständlich verbleibt die Textverantwortung bei den Verfassern.

Potsdam und Berlin, Juli 2016

Fritz Reusswig, Carlo Becker

Zitiervorschlag

Inhaltsverzeichnis

0 Kurzfassung .. 1
 0.1 Unser Klima wandelt sich ... 1
 0.2 Regionales Klima in Berlin 2050 und 2100 ... 2
 0.3 Vulnerabilitäten und Maßnahmen .. 3
 0.4 Klimaanpassung umsetzen .. 11
 0.5 Fazit ... 12

1 Einleitung ... 14
 1.1 Klimawandel und Anpassung als Herausforderung für Berlin 14
 1.2 Das AFOK im Kontext der Berliner Klimapolitik .. 17
 1.3 Methodisches Vorgehen bei der Erarbeitung des AFOK 21

2 Klimawandel und Klimaszenarien ... 25
 2.1 Szenarien des zukünftigen Klimawandels ... 25
 2.2 Verwendete Daten .. 26
 2.2.1 Regionale Klimamodelle CORDEX ... 26
 2.2.2 Beobachtungsdaten .. 28

3 Regionalisierte Klimaszenarien für Berlin 2050 und 2100 ... 29
 3.1 Entwicklung der Wettervariablen Temperatur – Beobachtung und Projektion 29
 3.1.1 Temperaturmittel ... 29
 3.1.2 Temperaturextreme ... 32
 3.2 Entwicklung der Wettervariablen Niederschlag – Beobachtung und Projektion 34
 3.2.1 Niederschlagsmittel ... 34
 3.2.2 Niederschlagsextreme ... 36
 3.3 Entwicklung weiterer Wettervariablen – Beobachtung und Projektion 40
 3.3.1 Gesamtabfluss (Total Runoff) .. 40
 3.3.2 Sturmereignisse .. 41
 3.4 Relevante Wettervariablen in der Übersicht ... 42

4 Sektorale Vulnerabilitäten und Maßnahmen ... 45
 4.1 Einführung ... 45
 4.2 Vulnerabilitäten und Maßnahmen in den Handlungsfeldern 47
 4.2.1 Menschliche Gesundheit, Bevölkerungsschutz .. 47
 4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen 63
 4.2.3 Wasserhaushalt, Wasservirtschaft ... 78
 4.2.4 Umwelt und Natur ... 89
 4.2.5 Energie- und Abfallwirtschaft .. 101
 4.2.6 Industrie, Gewerbe und Finanzwirtschaft .. 112
Verzeichnis der Abbildungen

Abbildung 2: Rekonstruierte und gemessene Sommertemperaturen in Europa .. 15
Abbildung 3: Historische und mögliche zukünftige Entwicklung der Treibhausgasemissionen nach den RCP-Szenarien des IPCC .. 16
Abbildung 4: Kernelemente einer Anpassungsstrategie für Berlin .. 19
Abbildung 5: Schematische Darstellung der Methodik des AFOK ... 21
Abbildung 6: Impressionen der beiden Stakeholder-Workshops .. 22
Abbildung 7: AFOK Wetterschmetterling Berlin .. 24
Abbildung 8: Einbindung von Regionalen Klimamodellen in Globale Klimamodelle .. 26
Abbildung 9: Änderung der Variable „Tageshöchsttemperatur“ .. 30
Abbildung 10: Mögliche Interpretationen der Bereiche unter der Verteilungskurve der Änderungsrate der Beispielgröße Tageshöchsttemperatur .. 30
Abbildung 11: Jahreszeitliche Betrachtung der absoluten Änderungen in der Tageshöchsttemperatur 31
Abbildung 12: Relative Änderung der Variable „heiße Tage“ ... 33
Abbildung 13: Relative Änderung der Variable „Eistage“ ... 34
Abbildung 14: Relative Änderung der Variable „Glatteistage“ .. 34
Abbildung 15: Relative Änderung der jährlichen gemittelten Niederschlagssummen .. 35
Abbildung 16: Jahreszeitliche Betrachtung der relativen Änderungen in der Niederschlagssumme 36
Abbildung 17: Relative Änderung der Variable „Höchste Niederschlagsmenge in 5 Tagen“ 37
Abbildung 18: Relative Änderung der Variable „Starkregentag“ ... 39
Abbildung 19: Jahreszeitliche Betrachtung der relativen Änderungen der Starkniederschlagstage 39
Abbildung 20: Relative Änderung der Variable „Niederschlag an Tagen unter 1°C“ .. 38
Abbildung 21: Relative Änderung der Variable „Längste Phase ohne Niederschlag“ .. 38
Abbildung 22: Relative Änderung der Variable „DrySpell-Tage“ ... 40
Abbildung 23: Relative Änderung der Variable „Total Runoff“ oder „Gesamtabfluss“ ... 41
Abbildung 24: Relative Änderung der Variable „Mittlere Windgeschwindigkeit“ .. 42
Abbildung 26: Impression Toulouse .. 44
Abbildung 27: Ende des Jahrhunderts - Berliner Klima wie im heutigen Toulouse ... 44
Abbildung 28: Schematische Darstellung des Verwundbarkeitskonzepts des IPCC ... 45
Abbildung 29: Beispielhafter Ausschnitt aus einem Pfaddiagramm (auch „Klimawirkungsmodell“) 46
Abbildung 30: Farbcode der sektoralen Wirkungen in den Klimawirkungsdiagrammen ... 46
Abbildung 31: Abweichungen der max. Lufttemperatur und der stationären Aufnahmen im Sommer 2006 vom Erwartungswert .. 48
Abbildung 32: Zusätzliche Mortalität in europäischen Teilregionen Anfang August .. 49
Abbildung 33: Zahl der zusätzlichen Hitzetoten in Berlin 2001-2010 .. 50
Abbildung 34: Abrupte Entwicklung von Temperatur und Starkregen-bedingter Schwankung der Luftfeuchte .. 53
Abbildung 36: Neue Krankheitsüberträger breiten sich nach Norden aus – Beispiel „Mücken“ 55
Abbildung 37: Ambrosia .. 57
Abbildung 38: Ambrosia – Bestandsgröße 2015 in dem FU Met Berlin-Brandenburger OnlineAmbrosia-Atlas .. 57
Abbildung 75: Vulnerabilitäts-Index der Berliner Wirtschaft nach Wirtschaftsbereichen .. 116
Abbildung 76: Vulnerabilität (blau), wirtschaftliches Gewicht (rot) und gewichtete Vulnerabilität (grün) der Berliner Wirtschaft nach Wirtschaftsbereichen .. 117
Abbildung 77: Leichtverletzte bei Unfällen (hier mit Fahrradbeteiligung) pro Tag in Abhängigkeit von der Maximaltemperatur in Berlin, Werkstage (2013) 120
Abbildung 78: Prozentualer Anteil des Radverkehrs (Wege) bei der Verkehrsmitteleilung nach Quartalen 2013 .. 120
Abbildung 79: Anteil des Radverkehrs am Gesamtverkehr (Wege) nach Bezirken ... 122
Abbildung 80: Überschwemmung Unterführung Wolfensteindamm .. 123
Abbildung 81: Klimasignale und Bahninfrastruktur .. 124
Abbildung 82: Blow Ups bei Fahrbahnplatten aus Beton ... 125
Abbildung 83: Berechnung der U120-Tage aus NO2-Konzentration und Hitzetagen ... 126
Abbildung 84: Entwicklung der Übernachtungszahlen in Berlin .. 129
Abbildung 85: Saisonale Schwankungen im Berlin-Tourismus aus In- und Ausland ... 130
Abbildung 87: Basketballplatz und Weitsprunganlage in Schöneberg nach starkem Regen 132
Abbildung 88: Erhöhte Vulnerabilität von Kindern .. 135
Abbildung 89: Lage der Berliner Schulen im Stadtgebiet, Einwohnerdichte Berlins und räumliche Verteilung der Bewertungsklassen zur thermischen Gesamtsituation 136
Abbildung 90: Grüne Schulhöfe .. 139
Abbildung 91: Schulgärten .. 137
Abbildung 92: Anpassungs- und Vermeidungsstrategien als ineinandergreifende Strategien gegen den Klimawandel und seine Folgen .. 142
Abbildung 93: Übersicht zu den Verfahren zur Wirtschaftlichkeitsbeurteilung .. 149
Abbildung 94: Links: Übersicht der Berliner Messstationen von DWD, Meteomedia, Berliner Wasserbetriebe (BWB) und dem Stadtmessnetz der Freie Universität .. 159
Abbildung 95: Integration des AFOK-Monitorings in das dIBEK ... 167
Abbildung 97: Subjektiv wahrgenommene gesundheitliche Beeinträchtigung durch Hitzeperioden (nach Bundesländern) ... 171
Abbildung 98: Strategische Ansatzpunkte einer Anpassungskommunikation ... 174
Verzeichnis der Tabellen

Tabelle 1: Verwendete Modellkombinationen aus dem CORDEX-Datensatz ... 27
Tabelle 2: Datenverfügbarkeit der sechs Berliner Wetterstationen .. 28
Tabelle 3: Mittelwerte und Trends für jährliche und saisonale Mittelwerte der Temperatur 29
Tabelle 4: Änderungsquoten der saisonalen Tageshöchsttemperaturmittel ... 32
Tabelle 5: Mittelwerte und Trends pro Jahr für Temperaturextreme ... 32
Tabelle 6: Mittelwerte und Trends für jährliche und saisonale Mittel des Niederschlags 34
Tabelle 7: Änderungsquoten der saisonalen Niederschlagssummen ... 36
Tabelle 8: Beobachtete Mittelwerte und Trends pro Niederschlagsextreme .. 37
Tabelle 9: Änderungsquoten der saisonalen Starkniederschlags-Häufigkeiten ... 39
Tabelle 10: Beobachtete Mittelwerte und Trends zu Kennwerten der Wettervariablen Wind 41
Tabelle 11: Zusammenfassung der beobachteten und projizierten Änderung der wichtigsten Wettervariablen .. 43
Tabelle 12: Spektrum der Folgen von Hitze auf menschliche Gesundheit .. 48
Tabelle 13: Dimensionen individueller Vulnerabilität gegenüber extremen Hitzeereignissen 51
Tabelle 14: Maßnahmen für das Management von Gesundheit und Bevölkerungsschutz – Übersicht 62
Tabelle 15: Maßnahmen im Handlungsfeld Gebäude, Stadtentwicklung, Grün- und Freiflächen – Übersicht .. 77
Tabelle 16: Ergebnisse der Simulationen des Berliner Abwassersystems .. 85
Tabelle 17: Maßnahmen im Handlungsfeld Wasser- Wasserwirtschaft – Übersicht................................. 88
Tabelle 18: Maßnahmen im Handlungsfeld Umwelt und Natur – Übersicht ... 100
Tabelle 19: Maßnahmen im Handlungsfeld Energie- und Abfallwirtschaft – Übersicht 111
Tabelle 20: Maßnahmen im Handlungsfeld Industrie, Gewerbe, Finanzwirtschaft – Übersicht 118
Tabelle 21: Maßnahmen im Handlungsfeld Verkehr und Verkehrsanlagen – Übersicht .. 128
Tabelle 22: Maßnahmen im Handlungsfeld Tourismus, Kultur, Sport – Übersicht ... 133
Tabelle 23: Gesundheitliche Folgen von zu geringer Wasserzufuhr bei Kindern, Jugendlichen und Erwachsenen ... 135
Tabelle 24: Maßnahmen im Handlungsfeld Bildung – Übersicht .. 141
Tabelle 25: Wechselwirkungen zwischen Maßnahmen im Handlungsfeld zur Klimaanpassung und den Politiken zur Vermeidung des Klimawandels ... 147
Tabelle 26: Zunahme von heißen Tagen – Spannbreite der Klimaszenarien .. 151
Tabelle 27: Negative Auswirkungen des Klimasignals auf die Produktivität der Berliner Wirtschaft. Optimistisches und pessimistisches Szenario ... 151
Tabelle 28: Auswirkungen auf die Zahl der Krankenhausaufenthalte und Todesfälle in Berlin 152
Tabelle 29: Exemplarische Auswahl von Maßnahmen aus den verschiedenen Handlungsfeldern und ihre Zuordnung zu den Kategorien „No-regret“, „Low-regret“, „Regret“ ... 156
Tabelle 30: Indikatortypen und Kategorien des AFOK in der Übersicht ... 158
Tabelle 31: Rohdaten für die State-Indikatoren ... 160
Tabelle 32: Übersicht der komplexeren State-Indikatoren .. 161
Tabelle 33: Impact- (Kategorie I) und Response-Indikatoren (Kategorien A und D) pro Handlungsfeld 165
Tabelle 34: Liste der vorgeschlagenen Datenquellen und Indikatorbeauftragten des AFOK.......................... 166
Verzeichnis der Boxen

Box 1:	Klima-Analoge Ende des Jahrhunderts: Berliner Klima wie im heutigen Toulouse	44
Box 2:	Beispiel „Hitzesommer 2003“ – Extremwerte an hitzebedingten Sterbefällen in Europa und in Berlin	49
Box 3:	Klimawandel und Bevölkerungsschutz in Berlin	52
Box 4:	Klimafolgen aufgrund internationaler Interdependenzen am Beispiel von „Klimaflüchtlingen“	68
Box 5:	Vulnerable Gebäude und Quartiere	73
Box 6:	Die Grenzen technischer Systeme im Klimawandel und die Bedeutung von Green Infrastructure	85
Box 7:	Grunewald – Wald des Jahres 2015	93
Box 8:	Auswirkungen des Klimawandels auf die Finanzwirtschaft	113
Box 9:	Wetter- und Klimaabhängigkeit der Straßenverkehrsunfälle in Berlin	119
Box 10:	Sommersmog in Berlin unter Klimawandel	126
Box 11:	Ausgewählte Schlagzeilen in den Medien zu Auswirkungen des Klimawandels auf die Bereiche Tourismus, Kultur und Sport in Berlin	133
Box 12:	Erhöhte Vulnerabilität von Kindern	135
Box 13:	Schulgärten und Phänologische Gärten – Schutz- und Lernorte der Klimaanpassung	139
Kurzfassung

0.1 Unser Klima wandelt sich

An den Polen ist der Temperaturanstieg dabei stärker als am Äquator. Während die globale Mitteltemperatur – ein statistischer Durchschnittswert, der sich aus tausenden von Messungen an vielen Orten der Erde ergibt – in den letzten 100 Jahren um 0,8°C anstieg, erwärme sich Europa im gleichen Zeitraum um rund 1,3°C. Damit einher gehen die Veränderung von Niederschlagsmustern, das Abschmelzen von Gletschern und des Polareises, der Anstieg des Meeresspiegels und die Zunahme von Wetterextremen.

Berlin muss sich aktiv anpassen, um die potenziellen Schäden zu reduzieren und mögliche, sich ergebende Chancen zu nutzen. Es reicht keineswegs aus, nichts zu tun und auf die spontane Anpassungsfähigkeit der Stadtwirtschaft zu hoffen. Diese wird es zwar brauchen, aber sie kann nur mobilisiert werden, wenn es belastbare Zukunftsprognosen des Klimawandels in Berlin gibt, verbunden mit einer möglichst genauen Analyse der Verwundbarkeiten und einer abgestimmten Strategie des Senats. Dafür bildet das AFOK die Grundlage.

Seit 2016 liegt beim Umweltatlas eine neue Planungshinweiskarte vor die aufzeigt, welche Bereiche der Stadt bereits heute unter klimatischen Belastungen leiden und wo Berlin Potenziale für Anpassung besitzt. Das AFOK nimmt das zukünftige Berliner Klima in den Blick, und es wählt eine sektorale Perspektive, keine räumliche. Es greift damit die Zielstellung des 5. April 2016 in Kraft getretenen Berliner Energiewendegesetzes (EWG Bln) auf, das die Verbesserung der Anpassungsfähigkeit natürlicher, gesellschaftlicher und ökonomischer Systeme und den Erhalt der Funktionsfähigkeit städtischer Infrastrukturen sowie den Erhalt der urbanen Lebensqualität als Verpflichtung des Senats formuliert. Im Verbund mit dem StEP Klima/ StEP Klima KONKRET und der Planungshinweiskarte bildet das AFOK den Rahmen für eine Gesamtstrategie zur Anpassung Berlins an die Folgen des Klimawandels. Es beschreibt auf der Basis aktueller aktueller globaler und regionaler Klimaszenarien die Klimaveränderungen, die auf Berlin in der nahen (d.h. bis 2050) und der fernen Zukunft (d.h. bis 2100) zukommen werden und identifiziert vor diesem Hintergrund die Vulnerabilitäten (Verwundbarkeiten) für verschiedene gesellschaftliche Bereiche. Zudem steuert es strategische Ansatzpunkte und konkrete Maßnahmvorschläge bei um den kommenden

0.2 Regionales Klima in Berlin 2050 und 2100

Methodik

Im Ergebnis erhält man bei Ensemble-Rechnungen nicht einen einzigen Wert für einen bestimmten Klimaparameter pro Zeitpunkt, sondern eine Häufigkeitsverteilung der verschiedenen Modellergebnisse. Als Grundlage für die Vulnerabilitätsabschätzung und die Maßnahmenentwicklung des AFOK wurde von der Spanne an Werten ausgegangen, die die Mehrheit von zwei Drittel der Modelle prognostiziert. Der besseren Verständlichkeit halber wurden aus dem gesamten Zeitverlauf der Modelle bis 2100 zwei „Zeitscheiben“ besonders hervorgehoben, die als Orientierungsmarken für die Wirkungsabschätzung dienen: Zum einen die sog. „nahe Zukunft“ (Mittelwert der Periode 2031-2060), zum anderen die sog. „ferne Zukunft“ (Mittelwert der Periode 2071-2100).

Temperatur
Im Rahmen des AFOK wurden die letzten 30 Jahre an Wetterdaten von repräsentativ ausgewählten Messtationen auf dem Berliner Stadtgebiet ausgewertet, um den bereits erfolgten Klimawandel abschätzen zu können. Dabei zeigt sich: Schon in der jüngeren Vergangenheit kann man in Berlin einen Anstieg der Temperaturen beobachten.

Auf der Basis der erwähnten Ensemblerechnungen kann man für die nahe Zukunft konstatieren, dass voraussichtlich ein weiterer Anstieg der durchschnittlichen Tageshöchsttemperaturen um ca. 1,2 °C stattfinden wird. Für die ferne Zukunft ist mit einem Anstieg um ca. 3,2 °C zu rechnen. Besonders markant fällt der Anstieg im Herbst und Winter aus. Aber auch die Sommer in Berlin werden noch etwas heißer. Gegen Mitte des Jahrhunderts werden die Sommer im Schnitt etwa 1 °C wärmer als heute sein, gegen Ende um etwa 3 °C. Es gehört zu den „Markenzeichen“ des Klimawandels, dass die Extremwerte deutlicher zunehmen als die Mittelwerte, was an der statistischen Verteilung der Werte liegt.

Niederschläge

Wind

Betrachtet wurde auch die Variable Windgeschwindigkeit, wenngleich sie aus den Modellen am schwierigsten herzuleiten ist. Bis 2100 zeigen die herangezogenen Modellkombinationen hier keinen klaren Trend zur Zuwider Abnahme von Sturmereignissen. Aber die Unsicherheiten sind recht hoch.

0.3 Vulnerabilitäten und Maßnahmen

Der Begriff der Vulnerabilität (Verwundbarkeit) eines Systems für die Folgen des Klimawandels wird im Rahmen des AFOK im Sinne der Definition des Weltklimarats IPCC verstanden: ein notwendiger, aber kein hinreichender Faktor zur Abschätzung der Vulnerabilität ist die Exposition, also das Auseinandersetzen des Systems gegenüber einer Facette des Klimawandels. Sie wird durch das lokale Klima bestimmt. Die Sensitivität (Empfindlichkeit) für dessen Änderungen aber hängt nicht am Klima, sondern an den Eigenschaften des Systems. Beide Faktoren zusammen definieren die potenziellen Schäden. Ob sich diese potenziellen Schäden aber auch in wirkliche Schäden übersetzen hängt an der Anpassungsfähigkeit des Systems, also etwa daran, wie gut vorbereitet ein System ist oder welche Möglichkeiten zur Schadensbegrenzung oder –behebung bestehen. Im Rahmen des AFOK wurde die Vulnerabilität Berlins als Funktion der Vulnerabilität von neun Sektoren oder Handlungsfeldern bestimmt, die einzeln betrachtet werden.

Handlungsfeld Gesundheit und Bevölkerungsschutz

Weiterhin ergeben sich neue Herausforderungen für den Bevölkerungsschutz. Neben den Senatsverwaltungen, den Bezirken und der Berliner Feuerwehr sind auch private Hilfs- und Rettungsdienste wichtige Akteure des Katastrophenschutzes: Organisationen wie der Arbeiter-Samariter-Bund e.V. (ASB), das Deutsche Rote Kreuz (DRK), die Freiwilligen Feuerwehren (FF), die Johanniter-Unfall-Hilfe e.V. (JUH), der Malteser Hilfsdienst e.V. (MHD) oder die Bundesanstalt Technisches Hilfswerk (THW) – sind wichtige Pfeiler des Berliner Katastrophenschutzes.

- Ausbau von Frühwarnsystemen
- Steigerung der individuellen körperlichen Fitness
- Anpassung der Medikation und Beratung
- Rettungswesen und Katastrophenschutz aufstocken
- (Alten-) Pflegeprogramm zur Klimaanpassung
- Krankenhausprogramm zur Klimaanpassung
- Sicherstellen einer ausreichenden Trinkversorgung
- Anpassung/Verbesserung des Arbeitsschutzes
- Flexibilisierung von Arbeits- und Öffnungszeiten
- Hitzeangepasste Speise- und Getränkeangebote
- Erforschung klimabedingter Gesundheitsrisiken
- Landschaftsplanung berücksichtigt Allergiefolgen.
Handlungsfeld Gebäude, Stadtentwicklung, Grün- und Freiflächen

Das übergeordnete Ziel aller dieser Maßnahmen ist es, die Stadtoberfläche so umzubauen und zu qualifizieren, dass auch ein wachsendes Berlin seine Lebensqualität im Klimawandel erhält. Wenn strategisch wichtige Grün- und Freiflächen gesichert werden, wenn eine systematische Dach- und Fassadenbegrünung erfolgt, wenn das Kleiner Stadtraum aufgewertet wird (Grünvolumen, nicht nur Grünfläche), wenn versiegelte Flächen für Niederschläge durchlässiger werden, wenn Fassaden und Dächer begrünt werden, wenn kühle Wohlfühlorie in den Quartieren entstehen – dann kann Berlin klimagerecht wachsen. Ein neuer Umgang mit Wasser in der Stadt ergänzt diese stadtentwicklungsmaßnahmen. Folgende Maßnahmen sind vor diesem Hintergrund für das Handlungsfeld Gebäude, Stadtentwicklung, Grün- und Freiflächen anerzagen:

- Sicherung der klimatischen Entlastungs räume
- Schaffung von qualifizierten Grün- und Freiflächen, Dach- und Fassadenbegrünung
- Steigerung der Resilienz des Stadtgrüns
- Klimatische Entkoppelung von Neubauvorhaben
- Klimatische Qualifizierung der Stadttoberfläche
- Klimaanpassungskonzepte auf Quartierebene
- Pilotprojekte zu Klimaanpassungsmaßnahmen
- Bestehende Planungs instrumente klimafit machen
- Bereitstellung von zuhöllernen Räumen bei Hitze
- Begrenzung konventioneller Klimaanlagen
- Bessere Information für Mieter und Eigentümer
- Debatte zum Regenwassermanagement

Handlungsfeld Wasserhaushalt und Wasserwirtschaft

Jedes Jahr fallen rund 522 Mio. m³ Niederschlagswasser auf das Berliner Stadtgebiet. Davon verdunsten rd. 310 Mio. m³, 142 Mio. m³ versickern, und knapp 70 Mio. m³ werden über die Kanalisation abgeleitet. Den AFOK-Szenarien zufolge sind zwei Trends besonders hervorzuheben: Erstens nimmt der Jahresniederschlag bis 2050 um ca. 3-10 Prozent, bis 2100 um ca. 8-18 Prozent zu, besonders im Winterhalbjahr. Zweitens ist eine Zunahme von Starkregenereignissen zu erwarten, zwischen ca. 14 und 40 Prozent bis 2050 und zwischen ca. 22 und 80 Prozent bis 2100. Daraus ergibt sich eine Reihe von Risiken.

Gerade in diesem Handlungsfeld besteht also ein erheblicher Anpassungsbedarf, sollen Schäden vermieden und letztlich auch Kostenbelastungen reduziert werden. Durch eine Kombination verschiedener Maßnahmen lässt sich die Berliner Wasserwirtschaft „fit“ für den Klimawandel machen. Hierbei ist es sehr hilfreich, dass die BWB in den letzten Jahren eine Reihe von Forschungs- und Entwicklungsvorhaben durchgeführt haben, die sich mit diesen Zukunftsherausforderungen befassen.

Die Maßnahmen zielen darauf ab, die dezentrale Regenwasserversickerung zu erhöhen, die Oberfläche der Stadt für temporäre Überflutungen und kontrollierte Abläufe zu ertüchtigen und nur den unvermeidlichen „Rest“ an Zusatzwasser durch Optimierung der Kanalisation aufzufangen. Die freie Trinkwasserversorgung im öffentlichen Raum (Trinkbrunnen-Netz) muss zügig ausgebaut, Wasser in der Stadt zugänglich, erfahrbar und auch ästhetisch attraktiv gestaltet werden.

- Die Durchlässigkeit der Stadtoberfläche für Niederschlagswasser muss erhöht werden, um den Oberflächenabfluss zu reduzieren und die Kanalisation zu entlasten. Entseigungsmaßnahmen und Mulden-Rigolen-Systeme sind hier wichtig.
- Festzulegende Straßenabschnitte, Park- oder Spielplätze müssen die zu erwartenden Niederschlags spitzen dezentral zwischenspeichern, um sensible Gebäude und Infrastrukturen vor urbanen Überflutungen zu schützen und die Kanalisation zu entlasten.
- Gleichzeitig muss vor allem in den wärmeren Monaten die Verdunstungsgeschwindigkeit deutlich gesteigert werden, da der Verdunstungsvorgang der Umgebungsluft Wärme entzieht und dadurch zur Abkühlung des Stadtklimas beiträgt.
- Es braucht mehr kleine Oasen und Wohlfühlorte in den Berliner Quartieren, die neben ihrer stadtklimatischen und –hydratischen Funktion auch gesteigerte Aufenthaltsqualitäten bieten.
- Der Neuzuschnitt von Verantwortlichkeiten und Kostenträgerschaften verlangt nach verbesserter Koordination und der Kommunikation mit der Stadtgesellschaft.

Durch eine Umgestaltung gemäß dieser Schwammstadt-Prinzipien würde die Resilienz Berlins gegenüber den beiden wichtigsten Klimawandelfolgen – mehr Hitze und mehr Starkregen – deutlich erhöht, der Kostenanstieg der öffentlichen Infrastrukturunterhaltung gedämpft, vielleicht sogar reduziert, und die Lebens- und Aufenthaltsqualität in der Stadt erhöht werden. Insgesamt sind im Handlungsfeld Wasserhaushalt und Wasserwirtschaft folgende Maßnahmen zu ergreifen:

- Entkoppelung der Regenwasserbewirtschaftung
- Überflutungstaugliche Gestaltung der Oberflächen
- Anpassung der Infrastruktur an Starkregenereignisse
- Anpassung der Infrastruktur an Trockenheit und Hitze
- (Trink-) Wasserqualität sichern
- Steigerung der klimatischen Wirksamkeit von Gewässern
- Ausbau des Trinkbrunnennetzes
- Schaffung von Bademöglichkeiten und Freibädern
- Wassersensible Klimaanpassung als Thema
- Informationen für gefährdete Stadtgebiete
- Erforschung Wasserbilanz und Klimawandel.

Handlungsfeld Umwelt und Natur

Steigende Temperaturen und die durch Starkregen bedingte Zunahme der Mischwasserkanalisationsüberläufe werden die Wasserqualität beeinträchtigen. Berlins Wälder sind nicht nur Erholungsräume, sie binden CO₂, sie speichern (Trink-)Wasser, sie filtern Luftschadstoffe und kühlen die Stadt. Heißere, teilweise auch trockener Sommer setzen die Bäume unter Trockenstress, die zu erwartenden milderen Winter erhöhen das Risiko von Schädlingsbefall. Auch das innerstädtische Grün – Parks, Gärten, Straßenbäume etc. – küht die Stadt und sorgt für einen geringeren Oberflächenabfluss.

Nur rd. 2 Prozent der Landesfläche (1.985 ha) werden in Berlin landwirtschaftlich genutzt – meist für den Getreideanbau, als Dauergrünland oder für den Obstanbau. Die Betriebe sind vor Schäden durch Extremereignisse zu schützen, die Landwirtschaftsfläche sollte erhalten werden, nicht zuletzt für die Frisch- und Kaltluftzufuhr.

Die vorgeschlagenen Maßnahmen zielen darauf ab, die sensiblen Teile der grünen Infrastruktur Berlins besser zu schützen (z.B. durch Sicherung und Ausbau des Waldumbauprogramms) und resilienter gegenüber dem Klimawandel zu machen (z.B. durch die Pflanzung stressresistenter, möglichst einheimischer Arten). Die stärkere Nutzung von Ökokonten und die bessere Vernetzung von Naturschutzgebieten sollen die Berliner Artenvielfalt schützen. Vor diesem Hintergrund sind im Handlungsfeld Umwelt und Natur folgende Maßnahmen zu ergreifen:

- Berücksichtigung des vorsorgenden Bodenschutzes
- Ausbau des Berliner Bodenmonitorings
- Schutz und Renaturierung der Berliner Moorstandorte
- Ausbau des Berliner Moormonitorings
- Sicherung, Pflege und Entwicklung der Berliner Wälder
- Forstliches Umweltmonitoring
- Klimaresiliente und standortangepasste Pflanzungen
- Einrichtung eines Flächenpools/ Ökokontos
- Überprüfung von bestehenden Schutzgebieten
- Sicherung und Pflege der Berliner Kulturlandschaft
- Steigerung des innerstädtischen Grünvolumens
- Kampagne zur Klimaanpassung in Kleingärten

Handlungsfeld Energie- und Abfallwirtschaft

- Förderung energieeffizienter Kühlssysteme
- Vorsorge gegen Störungen in der Stromversorgung
- Verbesserte Planung von Energieanlagen mit Umweltbelangen
- Optimierung der Energieinfrastruktur, Fokus: Netz
- Optimierung der Energieinfrastruktur, Fokus: Speicher
- Sicherung der Abfallsammlung bei anhaltender Hitze
- Mehr Gesundheitsschutz für Mitarbeiterschaft
- Verstärkung der Bemühungen zur Abfallvermeidung.

Handlungsfeld Industrie, Gewerbe, Finanzwirtschaft

Der sommerliche Wärmeschutz in Wirtschaftsgebäuden sollte ausgebaut, klimafreundliche Kühlungsoptionen zum Schutz der Beschäftigten wie der Wertschöpfung genutzt werden. Perspektivisch muss auch über die Flexibilisierung von Arbeits- und Öffnungszeiten nachgedacht werden, wobei hier die Tarifparteien primär gefordert sind.
Vor diesem Hintergrund sind im Handlungsfeld Industrie, Gewerbe, Finanzwirtschaft folgende Maßnahmen zu ergreifen:

- Bereitstellung von verlässlichen Wetter-Prognosen
- Schulungsmaßnahmen zur Schadensvermeidung bei Wetterextremen
- Runde Tische zum Erfahrungsaustausch
- Anpassung von Bauförderung und Ausführungsfristen
- Erstellung betrieblicher Klimaanpassungskonzepte
- Erstellung branchenspezifischer Klimakonzepte
- Flexibilisierung von Arbeits- und Öffnungszeiten
- Verbesserung des sommerlichen Wärmeschutzes
- Vorsorge bei Bauaktivitäten im Außenbereich

Handlungsfeld Verkehr

Folgende Maßnahmen sind vor diesem Hintergrund für das Handlungsfeld Verkehr insgesamt aneraten:

- Aufbringung von angepasstem Straßenbelag
- Anpassung der Straßenentwässerung an Starkregen
- Reduktion von verkehrsbedingten NOx-Emissionen
- Sicherung des umweltgerechten Verkehrs trägermixes
- Verbesserung der Sicherheit des Radverkehrs
- Regelung zur Kühlung im ÖPNV
- Sicherheit des Fußverkehrs aufrechterhalten
- Task Force Verkehrsinfrastruktur-Check einführen.
Handlungsfeld Tourismus, Kultur und Sport

Viele Aktivitäten im Tourismus, in der Kultur und im Sport finden im Freien statt. Sie sind deshalb sensibel für Änderungen der klimatischen Rahmenbedingungen. Dabei bietet der Klimawandel hier auch klare Chancen für Berlin: die touristische Saison etwa dürfte sich verlängern, auch das Gastgewerbe könnte profitieren, z.B. durch attraktive Außenangebote, speziell, wenn für Verschattung gesorgt wird.

Im Kultur- und Sportbereich muss eine kostenlose Trinkwasserversorgung sichergestellt werden. Hier müssen wir auch über die Verlagerung von Öffnungs- und Veranstaltungszeiten nachdenken. Schließlich werden die Außenanlagen im Sportbereich durch Trockenstress und Starkregen vermehrt Belastungen ausgesetzt sein, weshalb die Pflege, aber auch die Entwässerung auf die neuen Rahmenbedingungen eingestellt werden müssen. Vor diesem Hintergrund sind im Handlungsfeld Tourismus, Kultur und Sport zu ergreifen:

- Anpassung von Angeboten im Kultur- und Sportbereich
- Kostenableitung von Trinkwasser
- Erfrischungsanlagen bei Veranstaltungen
- Marketingkonzept: Klimaangepasster Städetourismus
- Berücksichtigung der Touristen im Katastrophenenschutz
- Einrichtung von Drainagesystemen auf Sportplätzen

Handlungsfeld Bildung

0.4 Klimaanpassung umsetzen

Im Handlungsfeld Bildung sind daher folgende Maßnahmen angeraten:

- Schulgebäude für den Klimawandel ertüchtigen
- Förderung von Schulgärten
- Anpassung der (Vor-)Schulorganisation
- Schulen als Orte des Erfahrungsaustauschs
- Klimaanpassung in Bildungsangebote integrieren
- Klimaanpassung als Verstetigungsprogramm
- Verankerung von Klimaanpassung im Unterricht
- Klima-Aufklärung in Volkshochschulen
- Förderung von Bildungsaktionen mit Partnern.

Berlin ist keine Insel – Indirekte Auswirkungen des Klimawandels

Der Klimawandel ist ein globales Phänomen, und seine Folgen werden in unterschiedlicher Form überall auf der Welt spürbar sein. Durch seine geographische Lage in der Mitte Europas, seine Rolle als deutsche Hauptstadt und die vielfältigen funktionellen Verflechtungen ist Berlin auch indirekt anfällig für Klimafolgen, die andernorts – z.B. in Süddeutschland, Frankreich oder Afrika – auftreten. Neben den Risiken durch sogenannte „Kipp-Elemente“ (Tipping Points) des Erdsystems (wie der Abschwächung des Golfstroms, der Destabilisierung des indischen Monsuns oder dem Absterben der Korallenriffe) sind z.B. folgende Zusammenhänge teilweise schon gegenwärtig für Berlin spürbar:

- Stromversorgung. Berlins weitgehend unterirdisch verlegtes Stromnetz ist weniger anfällig, aber mit einem Stromimport von rd. 40% schlägt die höhere Verwundbarkeit des deutschen/europäischen Stromnetzes auch auf Berlin durch.

Anpassung an den Klimawandel als nationale und globale Aufgabe schützt also indirekt auch Berlin. Und Anpassung in Berlin hilft nicht nur den Berlinerinnen und Berlinern.

0.4 Klimaanpassung umsetzen

Implementierung

Monitoring

Kommunikation

Bundesweite Vergleichsuntersuchungen zeigen, dass die Wahrnehmung der Gefahren durch Hitze in Berlin sehr gering ausgeprägt ist, obwohl die Spreemetropole zu den gefährdetsten Städten in Deutschland gehört. Anpassungskommunikation muss aber nicht nur dieses mangelnde Risikobewusstsein schaffen helfen, sie muss auch dafür sorgen, dass sich Menschen für Selbst- und Fremdschutz stärker engagieren. Dabei sind auch ungewöhnliche Formate sinnvoll, etwa durch „Stolpersteine“ zu Klimarisiken im öffentlichen Raum, den Hinweis auf kühlende Orte oder Anpassungswettbewerbe im Quartier.

0.5 Fazit

Strategisch wichtige Infrastrukturen schützen

Auch die städtischen Infrastrukturen sind gefährdet und müssen geschützt werden. Seit einigen Jahren schon wird die Berliner Mischwasserkanalisation durch technische Maßnahmen so ertüchtigt, dass die periodisch wiederkehrenden Überläufe die Gewässer weniger stark belasten.

Alle gesellschaftlichen Gruppen sind gefordert!

Im Rahmen des AFOK wurden über 80 Maßnahmenvorschläge für alle neun betrachteten Sektoren entwickelt. Werden sie umgesetzt, ist unsere Stadt für den Klimawandel gut vorbereitet. Viele von ihnen weisen zudem Synergien zum Berliner Energie- und Klimaschutzprogramm (BEK) auf, mit dem die Stadt bis
2050 klimaneutral gemacht werden soll. Dem Berliner Senat kommt dabei, zusammen mit den Bezirken, eine Schlüsselrolle zu, da er viele dieser Maßnahmen beschließen, direkt umsetzen oder zumindest an ihrer Umsetzung maßgeblich mitwirken kann. Zudem sollen Senat und Bezirke eine Vorbildfunktion übernehmen und darüber hinaus die Klimaanpassung auch stärker im Bildungssystem verankern.

Wie beim Klimaschutz kann auch bei der Klimaanpassung die Umsetzung nur gelingen, wenn Wirtschaft und Gesellschaft aktiv mitwirken. Schließlich geht es dabei ja auch um das eigene Wohl.
I Einleitung

1.1 Klimawandel und Anpassung als Herausforderung für Berlin

1 Im Folgenden findet sich eine Kennzeichnung (†) wichtiger Fachbegriffe immer dann, wenn sie im Glossar erläutert werden.

Besonders auffällig werden diese Trends, wenn man sie in eine längere historische Perspektive stellt (vgl. Abbildung 2).

Quelle: BARRIOPEIRO et al. 2011: 222.

Berlin präsentierte sich im Jahr 2015 mit 10,9 °C (vieljähriges Berliner Mittel: 9,1 °C) als das wärmste, mit rund 510 l/m² (vieljähriges Berliner Mittel: 573 l/m²) als das trockenste und mit ungefähr 1.845 Stunden (vieljähriges Berliner Mittel: 1.635 Stunden) als überdurchschnittlich sonnenscheinsreiches Bundesland (DWD 2015).

1.1 Klimawandel und Anpassung als Herausforderung für Berlin

Hinzu kommt, dass das Klimasystem der Erde „träge“ ist, also Zeit braucht, um mit einer Änderung des Emissions-Antriebs zu reagieren. Selbst wenn es gelange, die weltweiten Emissionen sofort zu stabilisieren, also für die nächsten Jahrzehnte auf dem heutigen Niveau einzufrieren, ist eine weitere Erwärmung um mindestens 0,6 °C unabwendbar.

3 Vgl. POLIZEI BERLIN, Unfallstatistik; Online: https://www.berlin.de/polizei/aufgaben/verkehrssicherheit/verkehrsunfallstatistik/; Zugriff: 04.01.16.

Alle diese Überlegungen laufen auf einen Schluss hinaus: Ganz gleich, wie erfolgreich oder erfolglos globaler Klimaschutz ist, es ist ein Gebot der Klugheit und eine Pflichtaufgabe der Daseinsvorsorge, sich an ein sich wandelndes Klima anzupassen.

1.2 Das AFOK im Kontext der Berliner Klimapolitik

Der hier vorliegende Bericht ist das Ergebnis eines Forschungs- und Beratungsvorhabens, das unter der Leitung des Potsdam-Instituts für Klimafolgenforschung (PIK) zusammen mit den Planungsbüros bmgr Landschaftsarchitekten GmbH und Landschaft—Umwelt—Planung (LUP) GmbH, der Lösungen im Stadtteil (L.I.S.T.) GmbH und dem Institut für ökologische Wirtschaftsforschung (IÖW) im Auftrag der Forschungskonsortium unter Leitung des PIK einen Bericht zu den Auswirkungen des Klimawandels auf die Kulturlandschaft Berlin vor. Auf der Grundlage der Szenarien des damals vom PIK entwickelten statistischen regionalen Klimamodells STAR2 wurden relativ großräumige Auswirkungen diskutiert, insbesondere für die...

Um diese Lücke zu schließen, wurde seitens der Senatsverwaltung für Stadtentwicklung in Kooperation mit dem Deutschen Wetterdienst (DWD) Anfang 2008 beschlossen, den bestehenden Umweltatlas von Berlin zu aktualisieren und die künftige Klimaentwicklung einzuarbeiten. Im April 2010 erarbeitete der DWD (Regionalbüro Potsdam) ein Gutachten zur Bioklimatologie Berlins im Klimawandel, das auf den beiden Modellen \textit{WETTREG} und \textit{REMO} für die Klimaszenarien und dem stadtbioklimatischen Expertenmodell des DWD \textit{UBIKLIM} (\textit{Urbanes Bioklima Modell}) für die Belastungsermittlung basiert. Eine zentrale Schlussfolgerung lautet, dass die Sicherung innerstädtischer Parkanlagen und Freiflächen eine vordringliche Aufgabe der zukunftsorientierten Stadtentwicklungspolitik zu sein habe (DWD 2010).

1.2 Das AFÖK im Kontext der Berliner Klimapolitik

Stadtentwicklungsplan (StEP) Klima

Planungshinweiskarte Stadtklima Berlin

Die Hauptkarte enthält eine flächendeckende Bewertung der aktuellen stadtklimageschichtlichen Belastungssituationen und Entlastungsfunktionen auf der Ebene der Blöcke. Sie basiert auf sehr detaillierten

1.3 Methodisches Vorgehen bei der Erarbeitung des AFOK

Analysekarten in hoher räumlicher Auflösung (10m x 10m) und ermöglicht damit eine detaillierte Beobachtung des Stadttraumes. Ein Kernindikator ist dabei die humanbioklimatischen Situation, also die Bewertung der Außen temperatur unter den Gesichtspunkten von Gesundheit und Wohlbefinden. Die thermische Situation in rd. 60% des Siedlungsraumes im Berliner Stadtgebiet wird gegenwärtig als „ungünstig“ oder „weniger günstig“ eingestuft (SENTATUM 2015b). Da das AFOK, der StEP KONKRET und die Planungshinweis karte Stadt klima Berlin nahezu zeit gleich in getrennten Prozessen erarbeitet wurden, wurde eine enge fach liche Korrespondenz und inhalt liche Abstimmung vorgenommen.

Weitere Projekte zur Klimaanpassung in Berlin

1.3 Methodisches Vorgehen bei der Erarbeitung des AFOK

In der gut einjährigen Bearbeitungszeit wurde eine Reihe von Fragestellungen bearbeitet, die nach einem interdisziplinären Methodenzuschnitt verlangten. Die wichtigsten methodischen Elemente des Vorgehens sind in Abbildung 5 schematisch dargestellt.
1.3 Methodisches Vorgehen bei der Erarbeitung des AFOK

Zum anderen kamen Berlin-spezifische Gesichtspunkte zum Tragen, was z.B. zum Ausschluss des ansonsten deutschlandweit wichtigen eigenständigen Sektors Landwirtschaft (nicht aber: Wald- und Forstwirtschaft, die für Berlin wichtig ist) oder der Aufnahme des ansonsten nicht betrachteten Sektors Tourismus, Kultur, Sport geführt hat. Im Ergebnis werden in diesem Bericht neun Sektoren betrachtet:

- Menschliche Gesundheit, Bevölkerungsschutz
- Gebäude, Stadtentwicklung, Grün- und Freiflächen
- Wasserhaushalt, Wasserwirtschaft
- Umwelt und Natur
- Energie- und Abfallwirtschaft
- Industrie, Gewerbe und Finanzwirtschaft
- Verkehr, Verkehrsinfrastruktur
- Tourismus, Kultur, Sport
- Bildung

Diese sektorale Aufteilung ist die bisher umfassendste im Rahmen einer Klimawirkungs- und Klimaanpassungsuntersuchung für Berlin.14

Neben Analyse von Literaturquellen wurde vor allem auf eine frühzeitige Einbindung der Fachöffentlichkeit geachtet, die für eine möglichst präzise Entwicklung von Vulnerabilitätsabschätzungen und die Generierung

1.3 Methodisches Vorgehen bei der Erarbeitung des AFOK

von Maßnahmen unverzichtbar ist. Der Forschungsprozess konnte so um die Aspekte Erfahrungswissen, Datenhaltung, Kenntnis der Anpassungskapazität und Wirtschaftlichkeitskompetenz bereichert werden.\(^{15}\)

Abbildung 6: Impressionen der beiden Stakeholder-Workshops. Quelle: L.I.S.T.

Parallel zu diesem Prozess erfolgte die Rekonstruktion der wichtigsten Wettervariablen für Berlin in den letzten 30 Jahren sowie die Ermittlung der Berliner „Klimazukunft“ durch Szenarien. Um diese Fragen zu beantworten, wurde auf einen Modellensemble-Ansatz zurückgegriffen, wie er auch vom bundesweiten Netzwerk Vulnerabilität empfohlen wird (BUTH et al. 2015a, b). In den Kapiteln 2 und 3 wird näher auf die klimatologischen Aspekte des AFOK eingegangen.

Außerdem wurde ein Monitoringkonzept erarbeitet, das Indikatoren sowie ein Verfahren zu ihrer Erhebung bzw. Nutzung erhält (→ Kap. 7 sowie AFOK Endbericht Teil II: Materialien, Kap. 12).

Ein wichtiger Baustein des Projekts war schließlich die Ausarbeitung eines Kommunikationskonzepts (→ Kap. 8). Zu diesem Zweck wurde am 13.11.2015 ein Kommunikations-Workshop durchgeführt, auf dem ausgewiesene Experten/-innen aus ganz Deutschland ihre Erfahrungen und Empfehlungen für Berlin eingebracht haben (→ AFOK Endbericht, Teil II: Materialien, Kap. 14.3).
2 Klimawandel und Klimaszenarien

2.1 Szenarien des zukünftigen Klimawandels

Wie in Kapitel 1 betont wurde, ist dieser „schlimmste Fall“ der IPCC-Szenarien momentan leider noch ein Abbild des Emissionsgeschehens der letzten Jahre. Es ist daher keineswegs abwegig, sondern leider noch sinnvoll, ein RCP8.5-Szenario der Erarbeitung eines Anpassungskonzepts vorzuschalten.

2.2 Verwendete Daten

Hinzu kommen ein wissenschaftlicher und ein pragmatischer Grund für die getroffene Szenarien-Auswahl:

- Aus forschungspragmatischen Gründen war es notwendig, sich für ein einziges bestimmtes Szenario zu entscheiden. Die Entscheidung für den „schlimmsten Fall“ lag deshalb nahe, weil die Abschätzung der Klimafolgen für Berlin und die Herleitung von Maßnahmen unter dieser Voraussetzung nur dann sicher ist, dass „weniger schlimm“ kommt, als 2016 befürchtet.17

Dadurch wird auch ein in Zukunft möglicherweise eintretender geringerer Klimawandel zwar nicht explizit modelliert, aber implizit in die Abschätzungen „eingeschlossen“. Hätte man sich dagegen z.B. für ein mittleres Emissionsszenario als das pragmatisch einzig bearbeitbare entschieden, dann hätte völlig offen bleiben müssen, was Berlin im – aktuell leider einzig realistischen – Fall hoher Emissionen erwarten. Damit wäre der Auftragstellung und dem Anliegen des AFOK kaum entsprochen worden.

Allerdings sind die verfügbaren globalen Klimamodelle nicht fein genug aufgelöst, um hinreichend verlässliche Szenarien für eine Region wie Berlin herzuleiten. Hier kann man durch die Kombination globaler und regionaler Modelle deutliche Fortschritte erzielen.

2.2 Verwendete Daten

2.2.1 Regionale Klimamodellierung – CORDEX

Bei den ausgewerteten Klimaprojektionsdaten handelt es sich um sogenannte CORDEX Daten (Coordinated Downscaling Experiment) (GIORGİ et al. 2009). Durch die Einbettung von regionalen in globale Klimamodelle (vgl. Abbildung 8) weisen diese Daten mit einer Gitterzellengröße von 12,5 km eine höhere räumliche Auflösung auf, die auch eine Interpretation für das Berliner Stadtgebiet ermöglicht.

17 Es muss in diesem Zusammenhang aber darauf hingewiesen werden, dass Unsicherheit immer bedeutet: „Es kann auch schlimmer kommen“, nicht etwa: „Es ist unsicher, also wird es schon nicht so schlimm sein“. Die THG-Emissionen der letzten 10 Jahre etwa lagen noch über den Worst-Case-Szenarien, die der IPCC in seinem Dritten Sachstandsbericht von 2001 angenommen hatte (GCP 2015).
2.2 Verwendete Daten

<table>
<thead>
<tr>
<th>Globales Klimamodell</th>
<th>Institut</th>
<th>Land</th>
<th>Verfügbares Regionalmodell</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNRM-CERFACS</td>
<td>CNRM-GAME und CERFACS sind zwei mit dem französischen CNRS (Centre National de Recherches Météorologiques) kooperierende Institute</td>
<td>Frankreich</td>
<td>RCA4, CCLM</td>
</tr>
<tr>
<td>ICHEC-EC-EARTH</td>
<td>Irish Centre for High-End Computing (+EC-EARTH, ein von europäischen Wetterdiensten entwickeltes Erdsystemmodell)</td>
<td>Irland</td>
<td>HIRHAM, RACMO, CCLM, RCA4</td>
</tr>
<tr>
<td>IPSL-IPSL-CMSA</td>
<td>Institut Pierre-Simon Laplace</td>
<td>Frankreich</td>
<td>RCA4, WRF</td>
</tr>
<tr>
<td>MOHC-HadGEM2</td>
<td>Met Office Hadley Centre (zusätzlich HadGEM2-ES Realisierungen durch Instituto Nacional de Pesquisas Espaciais)</td>
<td>GB</td>
<td>RCA4</td>
</tr>
<tr>
<td>MPI-ESM-LR</td>
<td>Max Planck Institut für Meteorologie</td>
<td>Deutschland</td>
<td>RCA4, REMO, CCLM</td>
</tr>
</tbody>
</table>

2.2.2 Beobachtungsdaten

Um die vergangene klimatische Entwicklung im Raum Berlin abzuschätzen und eine bias-Korrektur der modellierten Daten durchzuführen, stehen die Messdaten der meteorologischen Stationen des Deutschen Wetterdienstes zur Verfügung.

<table>
<thead>
<tr>
<th>Station</th>
<th>Geogr. Breite</th>
<th>Geogr. Länge</th>
<th>Höhe der Station (Angaben in m)</th>
<th>Beginn Temperaturmessung</th>
<th>Ende Temperaturmessung</th>
<th>Beginn Niederschlagsmessung</th>
<th>Ende Niederschlagsmessung</th>
<th>Fehl. werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potsdam</td>
<td>52.3813</td>
<td>13.0622</td>
<td>81</td>
<td>Jan 1893</td>
<td>aktuell</td>
<td>Jan 1893</td>
<td>aktuell</td>
<td>-</td>
</tr>
<tr>
<td>Berlin-Dahlem (FU)</td>
<td>52.4578</td>
<td>13.3101</td>
<td>51</td>
<td>Jan 1950</td>
<td>aktuell</td>
<td>Jan 1950</td>
<td>aktuell</td>
<td>-</td>
</tr>
<tr>
<td>Berlin-Tempelhof</td>
<td>52.4675</td>
<td>13.4021</td>
<td>48</td>
<td>Jan 1948</td>
<td>aktuell</td>
<td>Jan 1948</td>
<td>aktuell</td>
<td></td>
</tr>
<tr>
<td>Berlin-Schönefeld</td>
<td>52.3807</td>
<td>13.5306</td>
<td>46</td>
<td>Jan 1967</td>
<td>aktuell</td>
<td>Jan 1967</td>
<td>aktuell</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 2: Datenverfügbarkeit der sechs Berliner Wetterstationen. Quelle: WebWerdis-Datenportal des DWD.

3 Regionalisierte Klimaszenarien für Berlin
2050 und 2100

3.1 Entwicklung der Wettervariablen Temperatur – Beobachtung und Projektion

3.1.1 Temperaturmittel

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potsdam</td>
<td>1893-2014</td>
<td>5,2 [+0,02]</td>
<td>13,5 [+0,02]</td>
<td>14,0 [+0,04]</td>
<td>23,3 [+0,02]</td>
<td>13,1 [+0,01]</td>
<td>3,4 [+0,02]</td>
</tr>
<tr>
<td>Berlin-Dahlem (FU)</td>
<td>1950-2014</td>
<td>5,4 [+0,02]</td>
<td>13,3 [+0,03]</td>
<td>13,7 [+0,04]</td>
<td>22,9 [+0,02]</td>
<td>12,9 [+0,02]</td>
<td>3,6 [+0,03]</td>
</tr>
<tr>
<td>Berlin-Alexanderplatz</td>
<td>1981-2011</td>
<td>7,3 [+0,01]</td>
<td>14,0 [+0,02]</td>
<td>14,3 [+0,04]</td>
<td>23,7 [+0,04]</td>
<td>13,1 [+0,00]</td>
<td>4,2 [+0,02]</td>
</tr>
<tr>
<td>Berlin-Tempelhof</td>
<td>1948-2014</td>
<td>5,9 [+0,01]</td>
<td>13,5 [+0,04]</td>
<td>13,7 [+0,06]</td>
<td>23,1 [+0,03]</td>
<td>13,3 [+0,03]</td>
<td>3,8 [+0,04]</td>
</tr>
<tr>
<td>Berlin-Buch</td>
<td>1961-2014</td>
<td>5,6 [+0,02]</td>
<td>13,3 [+0,04]</td>
<td>13,6 [+0,06]</td>
<td>23,1 [+0,04]</td>
<td>13,0 [+0,02]</td>
<td>3,5 [+0,04]</td>
</tr>
<tr>
<td>Berlin-Schönefeld</td>
<td>1967-2014</td>
<td>4,9 [+0,02]</td>
<td>13,5 [+0,03]</td>
<td>13,8 [+0,05]</td>
<td>23,3 [+0,02]</td>
<td>13,1 [+0,02]</td>
<td>3,5 [+0,03]</td>
</tr>
</tbody>
</table>

Deutlich ist zu erkennen, wie sehr sich die Bedingungen an den Stationen für diese Zeitskalen ähneln. Lediglich die Station Alexanderplatz zeichnet sich durch leicht erhöhte Mittelwerte aus. Dies kann auf den städtischen Hitzeinseleffekt zurückgeführt werden, welcher an dieser Station besonders stark spürbar ist. Die Trends in der Temperaturentwicklung der Vergangenheit sind an allen Messpunkten nicht negativ und reichen an einigen Stationen bis zu 0.06°C pro Jahr. Die meisten Temperaturtrends sind statistisch signifikant, lediglich für den Herbst trifft dies auf nur 3 von 6 Stationen zu; im Winter sogar nur auf 1 von 6.

3.1 Entwicklung der Wettervariablen Temperatur – Beobachtung und Projektion

<table>
<thead>
<tr>
<th>Nahe Zukunft (Änderung in %)</th>
<th>Fernere Zukunft (Änderung in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min/Max</td>
<td>Min</td>
</tr>
<tr>
<td>1,2</td>
<td>2,9</td>
</tr>
<tr>
<td>Max</td>
<td>1,9</td>
</tr>
<tr>
<td>3,7</td>
<td>3,7</td>
</tr>
</tbody>
</table>

Für die nahe Zukunft lässt sich bei Betrachtung der mittleren 2/3 der Modelle eine Änderung zwischen 1,2 und 1,9 °C angeben. In der ferneren Zukunft verzeichnen die mittleren Modelle eine Änderung von 2,9 bis 3,7 °C. Die Temperaturzunahme, welche bereits in der Vergangenheit nachweisbar ist, setzt sich (wie erwartet) verstärkt in der Zukunft fort. Es wurde weiterhin die räumliche Variabilität der Änderungsraten zwischen den Gitterzellen im Berliner Raum betrachtet. Für die Variable Jahresmittel der Tageshöchsttemperatur sind die Schwankungen sehr gering und liegen bei maximal 0,1 °C.

Abbildung 7: Änderung der Variable „Tageshöchsttemperatur“ für Berlin (Gitterzelle Dahlem) – Zeitreihen der CORDEX-Modellergebnisse (oben links), Verteilung der absoluten Temperaturänderungen (oben rechts) und die über alle betrachtete Gitterzellen aggregierte Änderung der Mehrheit der Modelle18 (Tabelle unten). Quellen: Eigene Berechnungen – Siehe Text.

18 Mit StDev = Standard Deviation; engl. Ausdruck für Standardabweichung. Die Standardabweichung ist ein statistisches Maß, welches die Streubreite der Werte einer Variablen um ihren Mittelwert angibt.

Abbildung 8: Mögliche Interpretationen der Bereiche unter der Verteilungskurve der Änderungsrate der Beispielgröße Tageshöchsttemperatur. Quellen: Eigene Berechnungen – Siehe Text.

Abbildung 11 zeigt die entsprechenden Änderungen in der Variablen nach Jahreszeiten aufgeschlüsselt. Auch hier sind die Schwankungen zwischen den Gitterzellen nur minimal.

Die Angaben für die Mehrheit der Modelle (vgl. im Folgenden Tabelle 4) wurden jedoch über alle Zellen betrachtet und geben die jeweiligen Minima und Maxima wieder. Die Änderungen im Frühjahr sind mit +0.9 bis +1.8°C (+2.3 bis 3.1°C) am geringsten und im Winter mit +1.1 bis +2.5°C (+3.5 bis +4.4°C) am stärksten.

19 Die Verwendung des Singulars sollte nicht verdecken, dass es dabei nicht nur um verschiedene individuelle Umgangsweisen mit Häufigkeitsverteilungen geht, sondern man damit auch soziale Gruppen oder „Interpretationsgemeinschaften“ beschreiben kann.

20 Dafür werden die Modelle nach der Größe der Änderungsrate sortiert und die zwei niedrigsten und zwei höchsten Modelle („Ausreißer“) herausgenommen. Diese Wahl kann aus einer langjährigen Erfahrung mit der Entwicklung von Klimaprojektionen heraus als die angemessene Umgangsweise betrachtet werden.
3.1 Entwicklung der Wettervariablen Temperatur – Beobachtung und Projektion

<table>
<thead>
<tr>
<th>Jahreszeit</th>
<th>Temperaturänderung bis 2031-2060</th>
<th>Temperaturänderung bis 2071-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frühling</td>
<td>+0,9 bis +1,8°C</td>
<td>+2,3 bis +3,1°C</td>
</tr>
<tr>
<td>Sommer</td>
<td>+1,0 bis +1,7°C</td>
<td>+2,3 bis +3,5°C</td>
</tr>
<tr>
<td>Herbst</td>
<td>+1,3 bis +2,1°C</td>
<td>+3,0 bis +4,1°C</td>
</tr>
<tr>
<td>Winter</td>
<td>+1,1 bis +2,5°C</td>
<td>+3,5 bis +4,4°C</td>
</tr>
</tbody>
</table>

3.1.2 Temperaturextreme

Nach der Betrachtung der Jahres- und Saisonmittel werden nun Temperaturextreme betrachtet. Dafür werden folgende Kenntage untersucht:
- „Heiße Tage“ mit Tageshöchsttemperaturen über 30°C,
- „Tropische Nächte“ mit Tagestiefsttemperaturen über 20°C und
- „Eistage“ mit Tageshöchsttemperaturen unter 0°C.

Zusätzlich werden sogenannte „Glatteistage“ betrachtet. Hier wird die Entwicklung von Tagen analysiert, an denen die Höchst- und Tiefsttemperaturen mit einem unterschiedlichen Vorzeichen versehen sind, es also mindestens einmal an diesen Tagen zum Durchgang durch die 0°C-Grenze kommt. Wie oben beschrieben, kommen hierfür Perzentil-Grenzen zum Einsatz, welche der Station Dahlem für 0°C Tageshöchst- bzw. Tiefsttemperatur entnommen wurden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potsdam</td>
<td>1893-2014</td>
<td>9,6 [+0,10]</td>
<td>0,3 [+0,01]</td>
<td>21,4 [-0,08]</td>
<td>62,2 [-0,09]</td>
</tr>
<tr>
<td>Berlin-Dahlem (FU)</td>
<td>1950-2014</td>
<td>7,3 [+0,10]</td>
<td>0,4 [+0,01]</td>
<td>19,9 [-0,08]</td>
<td>55,6 [-0,06]</td>
</tr>
<tr>
<td>Berlin-Alexanderplatz</td>
<td>1981-2011</td>
<td>9,6 [+0,10]</td>
<td>5,0 [+0,06]</td>
<td>18,0 [-0,08]</td>
<td>36,0 [+0,13]</td>
</tr>
<tr>
<td>Berlin-Tempelhof</td>
<td>1948-2014</td>
<td>8,2 [+0,11]</td>
<td>1,3 [+0,02]</td>
<td>19,9 [-0,10]</td>
<td>51,5 [-0,07]</td>
</tr>
<tr>
<td>Berlin-Buch</td>
<td>1961-2014</td>
<td>8,2 [+0,14]</td>
<td>0,5 [+0,00]</td>
<td>21,0 [-0,22]</td>
<td>52,4 [+0,01]</td>
</tr>
<tr>
<td>Berlin-Schönefeld</td>
<td>1967-2014</td>
<td>8,6 [+0,05]</td>
<td>0,1 [+0,01]</td>
<td>21,1 [-0,06]</td>
<td>67,0 [-0,13]</td>
</tr>
</tbody>
</table>

Tabelle 5: Mittelwerte und Trends pro Jahr (in eckigen Klammern) für Temperaturextreme an sechs Wetterstationen im Raum Berlin (grüne Zellen markieren signifikante Trends).
Quellen: Eigene Berechnungen – Siehe Text.

Bei tropischen Nächten lag die Häufigkeit meist bei unter einem Ereignis im Jahr. Lediglich in Tempelhof liegt sie bei 1,3 und am Alexanderplatz sogar bei 5 tropischen Nächten pro Jahr. An letzterer Station ist die Zunahme ebenfalls am größten. Alle Stationen zeigen eine Zunahme des Ereignisses.

Die Kennwerte für die kühleren Jahreszeit deuten bereits in der Vergangenheit auf eine Abnahme hin. So verzeichnen die Eistage aller Stationen eine Abnahme, diese liegt zwischen 0,08 und 0,22. Die Häufigkeit des
3.1 Entwicklung der Wettervariablen Temperatur – Beobachtung und Projektion

Kenntages beträgt um die 20 Tage pro Jahr. Die Station Alexanderplatz zeigt hier aufgrund ihrer urbanen Lage wieder den geringsten Wert.

Die folgende Abbildung 12 gibt einen Einblick in die Projektionen der regionalen Klimamodelle für den Kenntag „heißer Tag“. Die Zeitreihendarstellung (oben links) macht deutlich, wie stark die Häufigkeit laut der Modelle zunehmen wird, jedoch auch, dass diese Entwicklung einer starken interanuellen (Jahr-zu-Jahr) Schwankung unterliegt. Die Verteilung der Änderungsraten der einzelnen Modelle (oben rechts) zeigt, dass sich die Mehrheit der Modelle für die nahe Zukunft in der Größenordnung bis zu einer Verdopplung des Ereignisses bewegt und für die ferne Zukunft diese Änderung bis zum dreieinhalbfachen ansteigen kann. Diese Abbildung wurde für die Gitterzelle um Dahlem angefertigt.

Für die Ferne Zukunft wird mit einer Abnahme um 75 bis 90% gerechnet, womit im Mittel lediglich noch zwei bis drei Eistage am Ende des Jahrhunderts auftreten werden. Die Schwankungen zwischen den Gitterzellen sind noch geringer als bei den heißen Tagen.

In Abbildung 14 sind die Ergebnisse (Zeitreihen wurden für diese Variable nicht berechnet) für die Glatteistage dargestellt. Diese werden bis zur nahen Zukunft um 30 bis 50% und bis zur fernen Zukunft um 60 bis 80% abnehmen. Die Schwankung zwischen den Gitterzellen ist wieder relativ gering.

3.2 Entwicklung der Wettervariablen Niederschlag – Beobachtung und Projektion

3.2.1 Niederschlagsmittel

3.2 Entwicklung der Wettervariablen Niederschlag – Beobachtung und Projektion

<table>
<thead>
<tr>
<th>Station</th>
<th>Datenverfügbarkeit</th>
<th>Jahresniederschlag (mm) [Trend]</th>
<th>Frühling (mm) [Trend]</th>
<th>Sommer (mm) [Trend]</th>
<th>Herbst (mm) [Trend]</th>
<th>Winter (mm) [Trend]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potsdam</td>
<td>1893-2014</td>
<td>565 [+0,05]</td>
<td>131 [-0,01]</td>
<td>177 [-0,09]</td>
<td>124 [-0,01]</td>
<td>134 [+0,14]</td>
</tr>
<tr>
<td>Berlin Dahlem</td>
<td>1950-2014</td>
<td>578 [+0,05]</td>
<td>132 [+0,07]</td>
<td>183 [-0,16]</td>
<td>127 [+0,03]</td>
<td>136 [+0,21]</td>
</tr>
<tr>
<td>Berlin-Tempelhof</td>
<td>1948-2014</td>
<td>571 [-0,04]</td>
<td>131 [-0,09]</td>
<td>182 [-0,08]</td>
<td>126 [+0,04]</td>
<td>131 [+0,21]</td>
</tr>
<tr>
<td>Berlin-Buch</td>
<td>1961-2014</td>
<td>567 [+1,33]</td>
<td>131 [+0,13]</td>
<td>175 [+0,84]</td>
<td>128 [+0,07]</td>
<td>133 [+0,53]</td>
</tr>
<tr>
<td>Berlin-Schönefeld</td>
<td>1967-2014</td>
<td>510 [+0,82]</td>
<td>122 [-0,21]</td>
<td>167 [+0,99]</td>
<td>111 [+0,05]</td>
<td>111 [+0,17]</td>
</tr>
</tbody>
</table>

Abbildung 15 gibt detailliertere Informationen über die projizierte Entwicklung des Jahresniederschlags durch die regionalen Klimamodelle: Sowohl die Zeitreiendarstellung (links) als auch die reine Darstellung der Änderungsraten (rechts) verdeutlichen, dass es für beide betrachteten Zeiträume in der Zukunft kein Modell gibt, welches einen Rückgang der Jahressumme des Niederschlags projiziert.

Für die nahe Zukunft ist die Zunahme mit 2 bis 8% noch relativ gering. Für die ferne Zukunft laufen die Modelle etwas weiter auseinander und der Bereich der Mehrheit der Modelle umfasst den Bereich von +6 bis +18%. Relativ betrachtet ist die Schwankung zwischen den Gitterzellen bei dieser Variablen größer als bei den Temperaturgrößen.

Abbildung 16 zeigt die entsprechenden Änderungen in der Variablen nach Jahreszeiten aufgeschlüsselt. Auch hier sind die Schwankungen zwischen den Gitterzellen nur minimal.
3.2 Entwicklung der Wettervariablen Niederschlag – Beobachtung und Projektion

Die Angaben für die Mehrheit der Modelle (siehe Tabelle 7 und die Gesamtschau in der Tabelle am Kapitelende) wurden über alle Zellen betrachtet und geben die jeweiligen Minima und Maxima wieder.

<table>
<thead>
<tr>
<th>Jahreszeit</th>
<th>Niederschlagsänderung bis 2031-2060</th>
<th>Niederschlagsänderung bis 2071-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frühling</td>
<td>+9 bis +19 %</td>
<td>+15 bis +26 %</td>
</tr>
<tr>
<td>Sommer</td>
<td>-7 bis +10 %</td>
<td>-9 bis +9 %</td>
</tr>
<tr>
<td>Herbst</td>
<td>-5 bis +12 %</td>
<td>+6 bis +20 %</td>
</tr>
<tr>
<td>Winter</td>
<td>+1 bis +18 %</td>
<td>+13 bis +30 %</td>
</tr>
</tbody>
</table>

3.2.2 Niederschlagsextreme

Starkniederschlagstage, welche hier als Tage über 10 mm Niederschlag definiert wurden, traten etwa zwischen 10 und 12-mal im Jahr im Raum Berlin auf. Hier zeigen die Trends alle, bis auf die Station Potsdam, ein positives Vorzeichen, sind jedoch nicht signifikant.

Als Indikatoren für das andere Ende der Niederschlagsverteilung war die längste Phase von aufeinander folgenden Tagen mit einem Niederschlag von jeweils unter 1 mm gewählt (engl.: Consecutive Dry Days; CDD), sowie die sogenannten DrySpell-Tage (KRYSANOVA/ VETTER/ HATTERMANN 2008). Bei diesen handelt es
3.2 Entwicklung der Wettervariablen Niederschlag – Beobachtung und Projektion

<table>
<thead>
<tr>
<th>Station</th>
<th>Datenverfügbarkeit</th>
<th>MaxPrec-5 Days (mm)</th>
<th>Starkregentage (P>10mm)</th>
<th>Schnee (Niederschlag bei Tmin=1°C)</th>
<th>Längste Trockenphase</th>
<th>DrySpell-Tage</th>
<th>Anzahl Trockentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potsdam</td>
<td>1893-2014</td>
<td>56 [-0.04]</td>
<td>10.9 [-0.04]</td>
<td>119 [-0.1]</td>
<td>22.3 [+0.00]</td>
<td>34.3 [+0.16]</td>
<td>257 [+0.04]</td>
</tr>
<tr>
<td>Berlin Dahlem</td>
<td>1950-2014</td>
<td>56 [+0.04]</td>
<td>11.7 [+0.01]</td>
<td>108 [-0.5]</td>
<td>23.2 [+0.06]</td>
<td>26.7 [+0.30]</td>
<td>255 [+0.17]</td>
</tr>
<tr>
<td>Berlin Alexanderplatz</td>
<td>1981-2011</td>
<td>58 [-0.32]</td>
<td>10.7 [+0.09]</td>
<td>81 [+1.3]</td>
<td>25.8 [+0.04]</td>
<td>252 [+0.21]</td>
<td></td>
</tr>
<tr>
<td>Berlin Tempelhof</td>
<td>1948-2014</td>
<td>59 [-0.03]</td>
<td>12.2 [+0.01]</td>
<td>94 [-0.2]</td>
<td>26.3 [+0.05]</td>
<td>30.5 [+0.38]</td>
<td>259 [+0.01]</td>
</tr>
<tr>
<td>Berlin Buch</td>
<td>1961-2014</td>
<td>60 [+0.13]</td>
<td>10.9 [+0.03]</td>
<td>104 [-0.2]</td>
<td>24.3 [+0.10]</td>
<td>30.7 [+0.36]</td>
<td>256 [-0.12]</td>
</tr>
<tr>
<td>Berlin Schönefeld</td>
<td>1967-2014</td>
<td>53 [-0.05]</td>
<td>9.9 [+0.04]</td>
<td>97 [-0.6]</td>
<td>24.9 [-0.02]</td>
<td>38.7 [+0.03]</td>
<td>264 [+0.01]</td>
</tr>
</tbody>
</table>

Quelle: Eigene Berechnungen – siehe Text.

In Abbildung 17 sind die Ergebnisse der regionalen Klimamodelle für die größte Niederschlagsmenge in 5 Tagen dargestellt. Keines der Modelle projiziert für die nahe und ferne Zukunft eine Abnahme dieser Größe. Die Zunahme liegt zwischen 2 und 19% bis zur Mitte und 5 und 29% bis zum Ende des Jahrhunderts.

Abbildung 15: Relative Änderung der Variable „Höchste Niederschlagsmenge in 5 Tagen“ für Berlin (Gitterzelle Dahlem) - Verteilung der Häufigkeitsänderungen (links) und die über alle betrachtete Gitterzellen aggregierte Änderung der Mehrheit der Modelle (Tabelle rechts). Quellen: Eigene Berechnung – siehe Text.

Abbildung 18 stellt die Modellergebnisse für die relative Änderung der Starkregentage dar. Diese wurden als Überschreitungshäufigkeit des 99,7 Perzentils analysiert, das bedeutet, dass ein Ereignis im Mittel nur etwa einmal pro Jahr auftritt.
3.2 Entwicklung der Wettervariablen Niederschlag – Beobachtung und Projektion

Die Mehrheit der Modelle projiziert eine Änderung dieser Größe von +7 bis +54% für die nahe Zukunft und +10 bis +95% für die ferne Zukunft. Die räumlichen Schwankungen der Änderungen sind relativ groß, was auf die Seltenheit des Ereignisses zurückzuführen ist. Die Statistik wird hier für ein Ereignis erstellt, welches im Mittel nur 30-mal im betrachteten Zeitraum auftritt. Als Vergleich lässt sich anmerken, dass für den Zeitraum 1971 bis 2000 das 99,7 Perzentile an der Wetterstation Dahlem etwa 27 mm Niederschlag an einem Tag entspricht. Die Änderungen in der Variablen Starkregen wurden des Weiteren noch für die einzelnen Jahreszeiten untersucht (siehe Abbildung 19).

Um eine Abschätzung für die Änderungen in den Schneemengen zu erhalten, haben wir die Änderungen des Niederschlages an Tagen mit Tiefstwerten unterhalb von 1°C berechnet. Die Ergebnisse sind in Abbildung 20 dargestellt und zeigen eine deutliche Abnahme dieser Größe, um 30 bis 40% bis zur nahen Zukunft und 60 bis über 70% bis zum Ende des Jahrhunderts.

Abbildung 18: Relative Änderung der Variable „Niederschlag an Tagen unter 1°C“ für Berlin (Gitterzelle Dahlem) – Verteilung der Häufigkeitsänderungen (links) und die über alle betrachteten Gitterzellen aggregierte Änderung der Mehrheit der Modelle (Tabelle rechts). Quellen: Eigene Berechnungen – siehe Text.

Des Weiteren wurden Wettervariablen betrachtet, welche Informationen über die Entwicklung von Trockenphasen liefern. Abbildung 21 stellt die projizierten Änderungen für die längste Phase ohne Niederschläge dar. Diese zeigen eine leichte Abnahme bis leichte Zunahme für beide betrachteten Zeiträume. Das Vorzeichen der Änderung ist hier nicht eindeutig klar; die kleinen Änderungen führen zu einer verhältnismäßig großen Schwankung zwischen den einzelnen Gitterzellen.
Ähnlich wie für den historischen Zeitraum, zeigen die DrySpell-Tage (Abbildung 22) für die nahe Zukunft eine Zunahme von etwa 20 bis 70% und für die ferne Zukunft eine deutliche Zunahme von über 6 bis 140%.

Die räumlichen Schwankungen sind gering. Die Berechnungen wurden auf der Basis von Perzentilen durchgeführt – wobei das 90. Perzentil der Höchsttemperatur in Dahlem etwa 25°C und das 70. Perzentil des Niederschlags etwa 1 mm entspricht.

3.3 Entwicklung weiterer Wettervariablen – Beobachtung und Projektion

3.3.1 Gesamtabfluss (Total Runoff)

Die Variable Gesamtabfluss oder Total Runoff stellt eine Größe dar, mit welcher die jährlich verfügbare Wassermenge abgeschätzt werden kann (Grundwasserneubildung plus Oberflächenabfluss). Die reine Niederschlagsmenge kann diese Verfügbarkeit nicht widerspiegeln, da große Teile des Wassers durch Verdunstung verloren gehen.

Der Gesamtabfluss ist etwa die Niederschlagsmenge abzüglich der aktuellen Evapotranspiration und ist neben Temperatur und Niederschlag abhängig von Bodeneigenschaften und Vegetation. Abbildung 23 (unten) stellt die Ergebnisse der Analyse dieser Größe dar. So zeigt die Mehrheit der Modelle zur nahen Zukunft eine Zunahme zwischen 1 und 26%. Zum Ende des Jahrhunderts nimmt die Schwankungsbreite zwischen den Modellen zu und es wird eine Änderung von -3 bis plus 52% projiziert. Es zeigt sich also, dass für die verfügbare Wassermenge für beide Zeiträume von der Mehrheit der Modelle kaum von einer Abnahme, eher von einer Zunahme ausgegangen werden kann.

Hierbei spielen neben Niederschlags- und Temperaturänderungen auch Faktoren wie die Auswirkungen der CO₂-Konzentration auf die Pflanzenphysiologie eine Rolle. GEDNEY et al. (2006) konnte erste Hinweise auf eine Zunahme im Gesamtabfluss durch diesen Effekt belegen.
3.3 Entwicklung weiterer Wettervariablen – Beobachtung und Projektion

3.3.2 Sturmmereignisse

Die Analyse der beobachteten Winddaten wurden lediglich an drei Stationen durchgeführt (vgl. im Folgenden Tabelle 10). Die anderen drei Stationen verfügten nicht über eine ausreichende Datenlage. Die Stationen Potsdam und Tempelhof zeigen für die betrachteten Größen signifikant abnehmende Trends.

<table>
<thead>
<tr>
<th>Station</th>
<th>Jahresmittel Tagesmittelgeschwindigkeit (m/s)</th>
<th>Tage über 9,6 m/s (Tagesmittelgeschwindigkeit) (Anz. d. Tage)</th>
<th>Jahresmittel Tageshöchstgeschwindigkeit (m/s)</th>
<th>Tage über 18 m/s (Tageshöchstgeschwindigkeit) (Anz. d. Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potsdam</td>
<td>4,5 [-0,01]</td>
<td>6,6 [-0,04]</td>
<td>12,24 [-0,05]</td>
<td>43,8 [-0,58]</td>
</tr>
<tr>
<td>Berlin-Tempelhof</td>
<td>4,0 [-0,01]</td>
<td>2,6 [-0,08]</td>
<td>11,08 [-0,04]</td>
<td>30,0 [-0,64]</td>
</tr>
<tr>
<td>Berlin-Schönefeld</td>
<td>3,9 [+0,01]</td>
<td>3,8 [-0,04]</td>
<td>10,42 [+0,01]</td>
<td>30,0 [-0,04]</td>
</tr>
</tbody>
</table>

Sowohl die Jahresmittel vom Tagesmittel des Windes sowie vom Tagesmaximalwind zeigen einen abnehmenden Trend, als auch die Überschreitungshäufigkeiten von 9,6 m/s Tagesmittel des Windes und 18 m/s Tageshöchstgeschwindigkeit. Für die Station Schönefeld sind die Trends nicht signifikant. Für die Projektionen der Wettervariablen Wind wurden die Änderungen der Variablen Jahresgemittelte Tagesmittelgeschwindigkeit sowie Anzahl der Tage mit Tagesmittelwerten über 9,6 m/s betrachtet (Abbildung 24 und Abbildung 25).
3.4 Relevante Wettervariablen in der Übersicht

Die Änderungen für die Mittlere Windgeschwindigkeit verbleiben indifferent, da einige Modelle eine minimale Abnahme und andere eine minimale Zunahme projizieren.

3.4 Relevanten Wettervariablen in der Übersicht

In Tabelle 11 am Kapitelende sind noch einmal alle Ergebnisse zusammengefasst. Es wurden die niedrigsten und höchsten Änderungswerte an den sechs Stationen (beim Wind nur drei) bzw. in den neun Gitterzellen dargestellt. Zusätzlich enthält die Tabelle eine Spalte, welche den qualitativen Trend der entsprechenden Größe angibt.

Es lässt sich mit Blick auf Tabelle 11 zusammenfassend feststellen, dass alle hitzebezogenen Größen eine Zunahme und alle kältebezogenen Größen eine Verringerung erfahren. Die Größen des Niederschlages sind bis auf die Sommerniederschläge zunehmend. Für die betrachteten Größen der Trockenheit ist das Bild stark von der Wettervariablen abhängig.

Der Gesamtabschluss spiegelt wieder, dass insgesamt ein steigendes Angebot an Niederschlag zu verzeichnen ist, gleichzeitig spiegelt aber auch die Zunahme von DrySpell-Tagen die höhere Temperatur und damit auch die steigende Verdunstung wieder.
<table>
<thead>
<tr>
<th>Wettervariable</th>
<th>Änderung in den stationsspezifischen Zeiträumen (MIN-MAX 6 WS)</th>
<th>Änderungen bis 2031-2060 (*) (MIN-MAX 9 GZ)</th>
<th>Änderungen bis 2071-2100 (*) (MIN-MAX 9 GZ)</th>
<th>Qualitativer Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahresmittel Tmax</td>
<td>+0,02 bis +0,04°C/a</td>
<td>+1,2 bis +1,9°C</td>
<td>+2,9 bis +3,7°C</td>
<td>Wärmer</td>
</tr>
<tr>
<td>Frühling Mittel Tmax</td>
<td>+0,04 bis +0,06°C/a</td>
<td>+0,9 bis +1,8°C</td>
<td>+2,3 bis +3,1°C</td>
<td>Wärmer</td>
</tr>
<tr>
<td>Sommer Mittel Tmax</td>
<td>+0,02 bis +0,04°C/a</td>
<td>+1,0 bis +1,7°C</td>
<td>+2,3 bis +3,5°C</td>
<td>Wärmer</td>
</tr>
<tr>
<td>Herbst Mittel Tmax</td>
<td>+0,00 bis +0,03°C/a</td>
<td>+1,3 bis +2,1°C</td>
<td>+3,0 bis +4,1°C</td>
<td>Wärmer</td>
</tr>
<tr>
<td>Winter Mittel Tmax</td>
<td>+0,02 bis +0,04°C/a</td>
<td>+1,1 bis +2,5°C</td>
<td>+3,5 bis +4,4°C</td>
<td>Wärmer</td>
</tr>
<tr>
<td>Heiße Tage</td>
<td>+0,05 bis +0,14 d/a</td>
<td>+56 bis +115 %</td>
<td>+155 bis +274 %</td>
<td>Deutlich mehr</td>
</tr>
<tr>
<td>Eistage</td>
<td>-0,06 bis -0,22 d/a</td>
<td>-33 bis -62 %</td>
<td>-76 bis -89 %</td>
<td>Deutlich weniger</td>
</tr>
<tr>
<td>Schnee (P an Tagen unter 1°C)</td>
<td>-0,6 bis +1,3 mm/a</td>
<td>-34 bis -45 %</td>
<td>-62 bis -76 %</td>
<td>Deutlich weniger</td>
</tr>
<tr>
<td>0°C – Durchgänge</td>
<td>-0,13 bis +0,13 d/a</td>
<td>-28 bis -49 %</td>
<td>-63 bis -79 %</td>
<td>Deutlich weniger</td>
</tr>
<tr>
<td>Jahressumme Niederschlag</td>
<td>-0,13 bis +1,34 mm/a</td>
<td>+2 bis +10 %</td>
<td>+6 bis +19 %</td>
<td>Leichte Zunahme</td>
</tr>
<tr>
<td>Frühlingssumme Niederschlag</td>
<td>-0,21 bis +0,13 mm/a</td>
<td>+9 bis +19 %</td>
<td>+15 bis +26 %</td>
<td>Zunahme</td>
</tr>
<tr>
<td>Sommersumme Niederschlag</td>
<td>-0,31 bis +0,99 mm/a</td>
<td>-7 bis +10 %</td>
<td>-9 bis +9 %</td>
<td>Indifferent</td>
</tr>
<tr>
<td>Herbstsumme Niederschlag</td>
<td>-0,04 bis +0,51 mm/a</td>
<td>-5 bis +12 %</td>
<td>+6 bis +20 %</td>
<td>Leichte Zunahme</td>
</tr>
<tr>
<td>Wintersumme Niederschlag</td>
<td>+0,17 bis 0,62 mm/a</td>
<td>+1 bis +18 %</td>
<td>+13 bis +30 %</td>
<td>Zunahme</td>
</tr>
<tr>
<td>Max P in 5 Tagen/ Dauerregen</td>
<td>-0,32 bis +0,13 mm/a</td>
<td>+2 bis +19 %</td>
<td>+5 bis +29 %</td>
<td>Leichte Zunahme</td>
</tr>
<tr>
<td>Starkregentag</td>
<td>-0,04 bis +0,09 d/a</td>
<td>+6 bis +42 %</td>
<td>+13 bis +85 %</td>
<td>Zunahme</td>
</tr>
<tr>
<td>Trockenphasen (CDD; P<1mm)</td>
<td>-0,02 bis +0,12 d/a</td>
<td>-9 bis +1 %</td>
<td>-8 bis +3 %</td>
<td>Indifferent</td>
</tr>
<tr>
<td>Trockenphasen (Dry Spells)</td>
<td>+0,03 bis +0,38 d/a</td>
<td>+22 bis +72 %</td>
<td>+66 bis +140 %</td>
<td>Deutlich mehr</td>
</tr>
<tr>
<td>Gesamtabfluss (Total Runoff)</td>
<td>/</td>
<td>+0,5 bis +26%</td>
<td>-2,7 bis +52%</td>
<td>Zunahme</td>
</tr>
<tr>
<td>Wind (Tagesmittel >9,6m/s)</td>
<td>-0,08 bis -0,04 d/a</td>
<td>-24 bis +21 %</td>
<td>-37 bis +20 %</td>
<td>Indifferent</td>
</tr>
</tbody>
</table>

Box 1: Klima-Analoge Ende des Jahrhunderts: Berliner Klima wie im heutigen Toulouse

Es stellt sich die Frage, wie die hier ermittelten Temperatur- und Niederschlagsänderungen greifbarer dargestellt werden könnten. Man kann sich nur schwer eine Vorstellung davon machen, was z.B. die Angabe „Anstieg der Jahresmitteltemperatur um 3 °C bis zum Ende des Jahrhunderts“ wirklich bedeutet.

Deshalb sei hier kurz eine mögliche Darstellungsweise erläutert – sogenannte Klima-Analoge.

Abbildung 24: Impression Toulouse. Quelle: Wikimedia

Toulouse hat heute eine Jahresniederschlagssumme von 640 mm sowie eine Jahresdurchschnittstemperatur von 12,7 °C, was recht genau den für 2100 projizierten Werten für Berlin entspricht. Das gleiche gilt für den Temperaturentwurf (Monatsmittel Dezember, Januar und Februar um 5 °C, Juli und August über 21°C) und den Monatsniederschlagsverlauf (zwischen 40 und 80 mm mit Maxima im Mai und Juni sowie relativ feuchte Winter).

22 Wenig überraschend ist der Tatbestand, dass die Stadt Toulouse ebenfalls als Klima-Analogon für Berlins Nachbarstadt Potsdam in Frage kommt, die – mit Blick auf die betrachteten Wettervariablen – ein sehr ähnliches Klima aufweist (REUSSWIG/WEYER/HAAG et al. 2015).
4 Sektorale Vulnerabilitäten und Maßnahmen

4.1 Einführung

Zusätzlich berücksichtigt wurden bereits laufende Anpassungsmaßnahmen, so dass nur die mit Blick auf den kommenden Klimawandel zusätzlich erforderlichen Maßnahmen identifiziert wurden. Dies kann die Fortführung einer bereits laufenden Maßnahme einschließen, sofern diese als hinreichend eingeschätzt wird. Für jeden Sektor wurde eine Vulnerabilitätsanalyse auf der Basis der relevanten Klimaänderungen vorgenommen. Außerdem wurden sektorspezifische Maßnahmen entwickelt, die die potenziellen Schäden vermindern/vermeiden und damit die Vulnerabilität herabsetzen sollen. Die Ergebnisse dieses Prozesses wurden pro Sektor in je ein graphisches Wirkungsmodell (eine sog. Pfaddiagramm) übertragen, das die besonderen Auswirkungen einer Facette des Klimawandels (→ Kap. 3, Wetterschmetterling) im Sektor durch Pfeilverbindungen darstellt und die Klimaanpassungsmaßnahmen denjenigen potenziellen Klimafolgen zuordnet, die durch die Maßnahmen vermindert/vermieden werden sollen.

Sektor-Pfaddiagramme (auch „Klimawirkungsdiagramme“)

23 In diesem Bericht werden die Begriffe „Sektor“ und „Handlungsfeld“ synonym gebraucht. Während der Begriff Sektor dabei auf eine objektive Struktur bzw. deren funktionale Ausdifferenzierung abstellt, unterstreicht der Begriff Handlungsfeld die Akteursabhängigkeit und damit den Gestaltungscharakter eines Sektors.

Abbildung 27: Beispielhafter Ausschnitt aus einem Pfaddiagramm (auch „Klimawirkungsmodell“).

Abbildung 28: Farbcode der sektoralen Wirkungen in den Klimawirkungsdiagrammen.

Auf einer vierten Ebene schließlich werden in Rautenform die erforderlichen Anpassungsmaßnahmen zur Schadensminderung dargestellt. Auch sie sind farblich entsprechend ihrer Sektorenzugehörigkeit gekennzeichnet. Dabei liegt der Schwerpunkt auf dem zusätzlichen Anpassungsbedarf an den zukünftigen

Klimawandel in Berlin – darauf bezieht sich ja auch das auf der ersten Ebene dargestellte Klimasignal. Bereits ergriffene Anpassungsmaßnahmen in Berlin wurden in die Pfaddiagramme nur aufgenommen, wenn ihnen auch in Zukunft eine Bedeutung zur Reduktion der städtischen Verwundbarkeit zukommt.

4.2 Vulnerabilitäten und Maßnahmen in den Handlungsfeldern

4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

4.2.1.1 Vulnerabilitäten

In der Folge wird zwischen direkten und indirekten Auswirkungen des Klimawandels auf die menschliche Gesundheit unterschieden. Direkt (siehe Abschnitt 4.2.1.1.1) wirkt der Klimawandel, wenn Wetterparameter die Funktionsfähigkeit des menschlichen Organismus unmittelbar beeinträchtigen, etwa wenn es infolge von Hitzestress zu Herz-Kreislauf-Problemen kommt. Indirekt (4.2.1.1.1) wirkt der Klimawandel dann, wenn sich z.B. die Umweltbedingungen für Krankheitserreger verändern und in der Folge davon Infektionskrankheiten häufiger auftreten.

4.2.1.1.1 Direkte Auswirkungen auf die menschliche Gesundheit

Unter den Klimasignalen, die zu direkten Gesundheitswirkungen führen, stehen extreme Hitzeereignisse deutlich im Vordergrund (4.2.1.1.1.1). Unter den weiteren direkten Auswirkungen (4.2.1.1.1.2) sind u.a. solche Extremwetterereignisse wie Stürme oder extreme Niederschlagsereignisse zu nennen, die Feuerwehr und Katastrophenschutz immer wieder vor erhebliche Herausforderungen stellen.

4.2.1.1.1.1 Extreme Hitzeereignisse

4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitzestress</td>
<td>Beeinträchtigungs- und Belastungsgefühl bei Hitzeeinwirkung und körperlicher Arbeit</td>
</tr>
<tr>
<td>Hitzesynkope</td>
<td>Ohnmächtiger zu sein bei hoher Umgebungstemperatur durch periphere Vasodilatation (Gefäßverengung)</td>
</tr>
<tr>
<td>Hitzekrämpfe</td>
<td>Muskuläre Krämpfe während körperlicher Anstrengung in heißer Umgebung, vermutlich durch Salzmangel verursacht und in der Regel harmlos</td>
</tr>
<tr>
<td>Überwärzung</td>
<td>Milder bis mittelgradig schwerer Zustand durch Wasser- und/oder Salzverlust (Dehydrierung), bedingt durch Hitzeinwirkung oder schwerere körperliche Arbeit.</td>
</tr>
<tr>
<td></td>
<td>Symptome sind hauptsächlich Körperkerntemperaturen von 37 bis 40 °C, niedriger Blutdruck, Schwäche, Kopfschmerzen, Erbrechen und Verwirrung.</td>
</tr>
<tr>
<td>Hyperthermie</td>
<td>Erhöhung der Körpertemperatur, wenn Thermoregulation durch Krankheiten, Medikamente oder durch exzessive äußere oder innere Wärmezufuhr bzw. -produktion gestört ist. Hyperthermie kann gesundheitsschädliche bis lebensbedrohliche Formen annehmen.</td>
</tr>
</tbody>
</table>

In einer Studie zum Zusammenhang von sommerlichem Hitzestress, Atemwegs- und Herz-Kreislauf-Erkrankungen für die Jahre 1994-2010 in Berlin konnte gezeigt werden, dass die Risiken sowohl für krankheitsbedingte Patientenaufnahmen (Morbidität) als auch für Sterbefälle im Krankenhaus (Mortalität) ab einer hohen Wärmebelastung (ca. 35 °C UTCI) stark ansteigen (SCHERBER 2014). Der UTCI (deutsch: Universeller thermischer Klimaindex) ist ein Maß für die „gefühlte Temperatur“; er berücksichtigt auch Windgeschwindigkeit und Luftfeuchtigkeit, die den Wärmehaushalt des menschlichen Körpers gemeinsam mit der Lufttemperatur beeinflussen.
4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

Ein markantes Beispiel war die Hitzezwelle von 2003, bei der nach einem EU-Forschungsvorhaben europaweit ca. 70.000 zusätzliche Hitzetote zu verzeichnen waren (ROBINE/ CHEUNG/ LE ROY et al. 2007; CHEUNG/ ROBINE/ VAN OYEN et al. 2007) – davon in Deutschland ca. 7.000.

Dies ist europaweit verglichen mit einem durchschnittlichen Sommer – ein Anstieg der Mortalitätsrate um 11%, wobei die jährliche Anzahl derartiger Ereignisse mit großer Spannbreite an-...

Legende

SCHERER/ HAAS/ HINKEL et al. (2011) zeigen Ansatzpunkte für ein Risikomanagement für diese Art von Hitzebedingten Katastrophen auf EU-Ebene auf und betonen die Vermeidbarkeit von Schäden dieses Ausmaßes durch effektive, proaktive Anpassungsmaßnahmen („Preparedness“).

2003 war in dieser Dekade mit 1.542 zusätzlichen Hitzetoten das viertschlimmste Jahr (SCHERER/ FEHREN-
BACH/ LAKES et al. 2013: 257). Im 10jährigen Schnitt sind damit durch Hitzeereignisse 1.400 Berliner/-innen
gestorben – mit einem klaren Schwerpunkt bei den über 65jährigen. Zum Vergleich: Im selben Zeitraum
starben auf Berlins Straßen im Schnitt 64,2 Menschen pro Jahr durch Verkehrsunfälle (vgl. ebd.: 258). Das
unterstreicht den bestehenden Handlungsbedarf.

SCHERER/ FEHRENBACH/ LAKES ET AL. 2013: 257.

Die Anfälligkeit einer Person gegenüber Hitzestress hängt von verschiedenen Faktoren ab, wie Lebensalter
und Geschlecht, genetischer Disposition, geographischer Lage, sozio-ökonomischem Status und
individuellem Lebensstil (vgl. CAPELLARO/ STURM 2015a, b; GABRIEL 2009, 2011; GABRIEL/ ENDLICHER 2011;
JENDRITZKY 2007; WHO 2010 und Tabelle 13). Mitentscheidend sind weiterhin sachlich-situlative Faktoren
wie etwa die baulichen Bedingungen der Wohnung (Isolierung, Luftzirkulation, verwendete Baustoffe,
Fensterflächen) und die Siedlungsichte in der individuellen Wohnumgebung (städtischer Wärmeinsel-
Effekt). Auch die Belastungen am Arbeitsplatz können zu den sachlich-situalen Faktoren gerechnet
werden, also z.B. das Ausüben körperlich anstrengender Tätigkeiten im Außenbereich oder die Lage eines
nicht-klimatisierten Büros mit großen Fensterflächen. Schließlich spielt hier auch die Verkehrsichte eine
richtige Rolle, da etwa die verkehrsbedingte Luftschadstoffbelastung am Wohnort ein erhöhtes
Gesundheitsrisiko darstellt.

Zur Abschätzung der zukünftigen Vulnerabilität der Berliner Bevölkerung gegenüber dem Klimasignal Hitze
ist es erforderlich, neben der Klimaänderung auch die zahlenmäßige Entwicklung vulnerabler Bevölkerungs-
gruppen zu betrachten (mit dem „demographischen Wandel“ als einem wesentlichen Faktor). Das
Schadensrisiko steigt nicht nur in dem Maße, in dem Berlins Bevölkerung absolut wächst, sondern auch
besonders dadurch, dass der Anteil und die Anzahl älterer, insbesondere hochbetagter Menschen deutlich
ansteigen werden (SENGESSOZ 2013a). Bis 2030 wird der Anteil der über 65-Jährigen an der Berliner
Bevölkerung um 30% zunehmen, der über 80-Jährigen dagegen um 80%. Bezirkliche Schwerpunkte der
absoluten Zahl der Hochbetagten 2030 werden sein: Charlottenburg-Wilmersdorf, Steglitz-Zehlendorf,
Tempelhof-Schöneberg und Reinickendorf. Vergleichsweise geringer wird deren Anteil in den Bezirken Mitte
und Friedrichshain-Kreuzberg sein, obwohl auch dort wie überall in Berlin die absolute Zahl der Älteren und
der Hochbetagten steigen wird.

(30 gegenüber 27), aber 2002 traten häufiger Perioden mit Hitze auf (4 gegenüber 3 in 2003). Dadurch gab es auch
statistisch mehr Nachwirkungs-Perioden mit erhöhter Mortalität (vgl. SCHERER/ FEHRENBACK/ LAKES et al. 2013: 256,
Tab. 7). Es sei angemerkt, dass sich Ergebnisse von Studien dieser Art – je nach spezifischem Erkenntnisinteresse und
gewählter Methodik – unterscheiden.

30 Nach Auswertungen der Planungshinweiskarte liegen derzeit (Stand 2016) fast 55% der Berliner Krankenhäuser und
de/umwelt/umweltatlas/db411_10.htm; Zugriff: 12.06.2016).
4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Merkmalsausprägungen erhöhter Vulnerabilität</th>
</tr>
</thead>
</table>
| Alter | – Viele Studien: >65 (je älter, desto vulnerabler)
– Kinder (Flüssigkeitshaushalt)
– Säuglinge/ <2 Jahre (Flüssigkeitshaushalt, thermische Regulierung) |
| Geschlecht | – Männer (35 – 65 Jahre); Frauen (>55 Jahre, zunehmend) |
| Sozio-ökonomische Faktoren | – sozial isolierte Menschen
– Menschen mit schwachem sozial-ökonomischen Status
– Menschen, die nicht täglich ihre Wohnung verlassen
– Wohnungslose |
| Sachlich-situlative Faktoren | – Menschen mit beruflichen Tätigkeiten im Freien
– Personen, die ihre Freizeit im Freien verbringen (Sportler/-innen etc.)
– Pflegeheimbewohner/-innen je nach Anpassungssituation\(^{31}\)
– Bewohner/-innen von Wohnlagen mit hoher Siedlungsichte oder Verkehrsaufkommen |
| Gesundheitlich-psychologische Determinanten | – chronisch Kranke
– Personen mit multiplem Medikamentengebrauch
– Bettlägerige und hospitalisierte Menschen
– Personen mit psychiatrischen Grundkrankheiten |

Tabelle 13: Dimensionen individueller Vulnerabilität gegenüber extremen Hitzeereignissen.

Rein rechnerisch kann allein aufgrund des demographischen Wandels (also noch ohne Klimawandel) von einem Anstieg der Morbiditätsrate in der Altersgruppe der über 65-Jährigen um 34 bis 49%, der Mortalitätsrate um ca. 7 bis 16% ausgegangen werden – genauere Untersuchungen und statistische Auswertungen sind hier aber erforderlich. Dennoch sollte deutlich geworden sein, dass hier dringender Handlungsbedarf besteht. Auch die Weltgesundheitsorganisation geht von einem signifikanten Anstieg der hitzebedingten Mortalität für die Bevölkerung über 65 bis 2050 ohne Anpassung aus (WHO 2014)

4.2.1.1.2 Weitere direkte Auswirkungen auf die menschliche Gesundheit

Box 3: Klimawandel und Bevölkerungsschutz in Berlin

Der Klimawandel und seine spezifischen Risiken wie Hitze, Sturm und Starkregeneignisse stellen für die Berliner Bevölkerung in einigen Bereichen eine potenzielle Bedrohung dar, vor denen sie durch ein geeignetes Notfallvor- sorge- und Gefahrenabwehrengystem möglichst weitgehend geschützt werden soll. „Bevölkerungsschutz“ ist ein Oberbegriff für Katastrophenschutz (für den die Länder zuständig sind) und den Zivilschutz (in Kriegs- und sonstigen politisch ausgelösten Krisenfällen – hierbei liegt die Zuständigkeit beim Bund). Nach den Terroranschlägen in den USA 2001 und der Hochwasser Katastrophen im Jahr 2002 an der Elbe haben Bund und Länder eine „Neue Strategie zum Schutz der Bevölkerung in Deutschland“ erarbeitet (Gemeinsame Melde- und Lagezentrum (GMLZ); zentral gesteuerte satellitengestützte und modulare Warnsysteme für die Bevölkerung).

Die Gefahrenabwehr im Land Berlin (Katastrophenschutz) ist gesetzlich geregelt (z.B. durch das Katastrophenschutzgesetz (KSG) oder das Rettungsdienstgesetz (RDG) des Landes Berlin) und untersteht der Senatsverwaltung für Inneres und Sport (SelnInSp). Neben den Senatsverwaltungen, den Bezirken und der Berliner Feuerwehr sind auch die Hilfs- und Rettungsdienste (z.B. der Arbeiter-Samariter-Bund (ASB), das Deutsche Rote Kreuz (DRK) oder das Technische Hilfswerk (THW) Bestandteil des Katastrophenschutzes. Es wird zwischen Alltagsgeschehen (Brände, Unfälle, Explosionen, Überschwemmungen etc.), außergewöhnlichen Schadensereignissen (Flugunfälle, Massenveranstaltungen, Schadstoffunfälle, extreme Wetterlagen etc.) sowie Katastrophen (Großschadensereignisse mit größerer Wirkung/ Betroffenheit, Naturkatastrophen) unterschieden, die Eintrittshäufigkeit nimmt dabei ab.

2. Die Klimaszenarien deuten auf eine hohe Wahrscheinlichkeit dafür hin, dass sich in naher, vor allem aber ferner Zukunft die Häufigkeit und der Charakter von außergewöhnlichen Schadensereignissen erhöhen/verändern werden.

32 Siehe online: http://www.bbk.bund.de/DE/NINA/Warn-App_NINA.html; Zugriff: 24.01.16.
4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

Abbildung 32: Abrupte Entwicklung (grün gestrichelter Bereich umfasst ca. 1 Stunde) von Temperatur (rot) und starkregenbedingter Schwankung der Luftfeuchte (blau) (Station der FU im Botanischen Garten, Dahlem) am 07.07.2006.

4.2.1.1.2 Indirekte Auswirkungen auf die menschliche Gesundheit

Der Klimawandel wirkt nicht nur – etwa über Hitzespitzen – direkt auf den menschlichen Organismus, sondern birgt auch vielfältige indirekte Gesundheitsrisiken, die genau beobachtet werden müssen. Hier sind steigende Gefahren durch Vektorkrankheiten, Allergien sowie weitere indirekte Auswirkungen zu nennen.34

4.2.1.1.2.1 Vektorkrankheiten

34 Vgl. überblicksartig etwa RKI 2010; INGENDAHL 2010; die auch Forschungsbedarfe benennen.
Zecken als Krankheitsüberträger

Mit den zu erwartenden Klimaveränderungen dürfte das Infektionsrisiko steigen, insbesondere durch die Zunahme milderer Winter. Studien haben gezeigt, dass sich die Winterruhe von Zecken in milden Wintern verkürzt bzw. vollständig ausbleibt; und somit die Zecke kontinuierlich auf Wirtssuche geht, womit ein deutscher Anstieg der FSME-Fälle verbunden ist (Süß 2008).

Gleichwohl kann derzeit noch nicht gesagt werden, ob mit zunehmendem Klimawandel auch die Populationsdichte von Zecken in Berlin ansteigen wird: Da in Berlin sowohl Trockenperioden als auch Starkregnereignisse zunehmen werden, ist weitere Forschung notwendig.

Neue Vektorkrankheiten

Der Klimawandel kann auch das Auftreten neuer Wirtstiere (Vektoren) befördern, die die Erreger bisher hier unbekannter Krankheiten mitbringen. Der Forschungsbedarf ist in diesem Bereich noch hoch. Belegt ist allerdings, dass sich mit zunehmender Erwärmung (mildere Winter) und unter feuchten Bedingungen einzelne gefährliche Mückenarten Richtung Norden ausbreiten könnten und dies auch schon tut.

Der seit 2012 in Form eines Citizen Science-Projekts, d.h. mit Unterstützung aus der Bevölkerung erstellte Mückenatlas Deutschland hilft dabei, bestehende Forschungslücken zu schließen. So wurde entdeckt, dass

z.B. die bis vor einigen Jahren in Deutschland unbekannt Asiatische Tigermücke (*Aedes albopictus*) 2011 am Oberrhein heimisch geworden ist. Diese Mücke konnte bis vor kurzem nur in den Tropen und Subtropen, nicht aber in Deutschland nachgewiesen werden.

Zudem kann nicht ausgeschlossen werden, dass einige der von den neuen Mückenarten übertragenen Krankheiten bereits aufgetreten, aber nicht zutreffend diagnostiziert worden sind – sondern etwa als „Sommergrippe“ erfasst wurden, da hier selten differentialdiagnostische Untersuchungen erfolgen.39

Tatsächlich ist der Klimawandel nicht die einzige Ursache dafür, dass aktuell das Risiko steigt, an einer neuen (oder erneut auftauchenden) Infektionskrankheit zu erkranken: Auch der kontinuierlich zunehmende (internationale) Reiseverkehr, der zunehmende internationale Handel, grenzüberschreitende (Tier-)Transporte oder Landnutzungsänderungen (z.B. Renaturierungen) tragen dazu bei, dass sich Erreger ver-

37 Siehe Prof. Egbert Tannich, Tropenmediziner und Leiter der Abteilung Molekulare Parasitologie am Bernhard-Nocht-Instituts für Tropenmedizin (BNI) in Hamburg anlässlich der Vorstellung eines 2011 gestarteten Großforschungsprojektes (Online: http://www.sk-zag.de/Neues_gemeinsames_Grossprojekt_Die_deutsche_Mueckenlandschaft_Forschung_am_blutsaugenden_Insekt.html ; Zugriff: 03.04.15).

38 Angaben nach Mückenatlas (Online: http://www.mueckenatlas.de/Content/Culicidae/PartII.aspx; Zugriff: 08.09.15).

39 Vgl. Mückenatlas, Stechmücken in Deutschland (http://www.mueckenatlas.de/Content/Culicidae/PartIII.aspx).

40 Eine weitere signifikante Intensivierung des deutschen und europäischen Außenhandels ist ein erklärtes Ziel der gegenwärtig diskutierten Freihandelsabkommen TTIP und CETA (vgl. z.B. BMWi 2015).

4.2.1.1.2.2 Pollenallergien

Klimaveränderungen können zu einer Verstärkung von Pollenallergie-Erkrankungen führen. Überträgt man die Allergiker-Rate für ganz Deutschland in Höhe von 20 bis 30% auf Berlin, so dürfte die Zahl derjenigen Berliner/-innen, die bereits an einer Allergie leiden, rund 700.000 Menschen betragen.

Die häufigste Allergie ist die Pollenallergie (auch Heuschnupfen, medizin.: Pollinosis). Dabei handelt es sich um eine allergische Reaktion auf Pollen (Blütenstaub), die i.d.R. durch die Pollen von Windbestäubern (dazu zählen z.B. verschiedene Gräser; Birke, Haselnuss, Erle) ausgelöst wird. Sie ist an sich bereits unangenehm, aber kann darüber hinaus bei Nichtbehandlung zu chronischem Asthma führen.

Ambrosia

Modellbasierte Studien für Europa zeigen, dass die Ambrosia-Pollen-Konzentration in der Luft 2050 etwa viermal so hoch wie heute sein wird, und dass der Klimawandel zu rd. 2/3 dafür verantwortlich sein wird -

4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

das restliche Drittel geht auf das Konto der Verbreitung der Samen durch Vogelfutter oder Erdtransporte (HAMAOUI-LAGUEL/ VAUTARD/ LIU et al. 2015).44

46 Darüber hinaus informiert das Aktionsprogramm die Berliner Bevölkerung durch Veranstaltungen, Flyer und die Internetseiten www.fuberlin.de/ambrosia.

Trotz deutlicher Bekämpfungserfolge wurde kürzlich (am 05.09.2014) mit 158 Pollen/m³ Luft die bisher höchste Pollenbelastung seit Beginn der Messungen in Berlin ermittelt – ein Indiz dafür, dass nach wie vor von einer hohen Vulnerabilität auszugehen ist.

Eichenprozessionsspinner

58

Neben seinem humanpathogenen Potenzial ist er auch als Forstschädling gefürchtet: In den letzten Jahren wurden durch ihn vermehrt auch Baumbestände in Berlin und Brandenburg befallen (→ Kap. 4.2.4).

4.2.1.1.2.3 Weitere indirekte Gesundheitsfolgen des Klimawandels

Dem Zusammenwirken von physikalischen (thermischen) Faktoren und Luftqualität (chemischen Faktoren) scheint in verschiedener Hinsicht eine besondere Bedeutung zuzukommen (vgl. schematische Darstellung in Abbildung 41).

Die Belastung der Luft mit Schadstoffen wie Stickoxiden (NO₂), Ozon (O₃) oder Feinstaub ist von den klimatischen Bedingungen abhängig: So können z.B. bei steigenden Temperaturen und vermehrter Sonneneinstrahlung vermehrt Sekundärschadstoffe wie Ozon entstehen (→ Kap. 4.2.7, Handlungsfeld Verkehr), durch die sich die Sonneneinstrahlung intensiviert. Umgekehrt verstärkt etwa die Feinstaubbelastung die negativen Gesundheitsfolgen von Hitzewellen.

Abbildung 40: Entwicklung der Hautkrebsfälle (Diagnosen durch Krankenhaus) je 100.000 Einw. in Berlin (blaue Linie) (2000-2014) im Vergleich mit ausgewählten Bundesländern; Quelle: RKI/ GBD.53

51 Vgl. RKI/ GBD (2014), Fußnote 53.
4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

Gegenwärtig wird mit der Einführung einer Neuorganisation der bislang in Teilen primär bevölkerungsbezogenen Erfassungsform eine bundesrechtliche Vorgabe zur flächendeckenden Einführung auch eines klinischen Krebsregisters bis 2018 umgesetzt („Berliner Krebsregister“). Damit stehen dann noch bessere Informationen auch zu Therapie und Krankheitsverlauf für alle Bezirke zur Verfügung.

Effektive Prävention gegen die gefährlichen UV-Strahlen (wie Mittagssonnen meiden, Sonnenschutz etc.) können oft durch Einzelne durchgeführt werden; besonders vulnerable Gruppen sind Säuglinge, Kleinkinder, Kinder: die epidermalen Stammzellen liegen hier dichter unter der Hautoberfläche und UV-Strahlung daher stärker ausgesetzt. Auch wegen des weiter bestehenden Forschungsbedarfs ist eine aussagefähige Statistik in diesem Bereich sehr wichtig. Trotz Einführung der Meldepflicht ist die Rate der ärztlichen Meldungen von Neuerkrankungen an die Berliner Erfassungsstelle noch optimierungsfähig.

54 Neben der Temperatur ist der Niederschlag eine wichtige Klimavariablen. Langfristige Trockenphasen erhöhen das Waldbrandrisiko und damit auch die Feinstaubbelastung im Stadtgebiet.

In niederschlagsreichen Sommern begünstigt die erhöhte Luftfeuchtigkeit die Entstehung von gesundheitsschädlichen Schimmelpilzen in Wohnungen und auf Lebensmitteln. Zudem werden hohe Temperaturen bei hoher Luftfeuchtigkeit als belastender empfunden als bei niedriger Luftfeuchtigkeit.

4.2.1.2 Maßnahmen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stärkung der Eigenvorsorge</td>
</tr>
<tr>
<td>MGBS-1</td>
<td>Ausbau von Frühwarnsystemen</td>
</tr>
<tr>
<td>MGBS-2</td>
<td>Steigerung der körperlichen Fitness</td>
</tr>
<tr>
<td>MGBS-3</td>
<td>Anpassung der Medikation und Beratung</td>
</tr>
<tr>
<td></td>
<td>Stärkung der Fremdvorsorge</td>
</tr>
<tr>
<td>MGBS-4</td>
<td>Rettungsdienste und Katastrophenschutz aufstocken</td>
</tr>
<tr>
<td>MGBS-5</td>
<td>Schwerpunktprogramm Klimaanpassung (Alten-)Pflege</td>
</tr>
<tr>
<td>MGBS-6</td>
<td>Schwerpunktprogramm Klimaanpassung Krankenhausbereich</td>
</tr>
<tr>
<td>MGBS-7</td>
<td>Sicherstellen einer ausreichenden Trinkversorgung</td>
</tr>
<tr>
<td>MGBS-8</td>
<td>Anpassung/Verbesserung des Arbeitsschutzes</td>
</tr>
</tbody>
</table>

55 Für eine ausführlichere Darstellung der Maßnahmenblätter sei auf die jeweiligen Maßnahmenblätter im Anhang (→ Kap. 10) verwiesen.
4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

<table>
<thead>
<tr>
<th>MGBS-9</th>
<th>Flexibilisierung von Arbeits- und Öffnungszeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGBS-10</td>
<td>Hitzeangepasste Speise- und Getränkeangebote in Kantine und Gaststätten</td>
</tr>
<tr>
<td>MGBS-11</td>
<td>Erforschung und Bewertung klimabedingter Gesundheitsrisiken</td>
</tr>
<tr>
<td>MGBS-12</td>
<td>Berücksichtigung von Allergiefolgen bei der Landschaftsplanung</td>
</tr>
</tbody>
</table>

Tabelle 14: Maßnahmenvorschläge im Handlungsfeld Gesundheit und Bevölkerungsschutz – Übersicht.
4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

Im Rahmen des AFOK geht es darum, aufbauend auf den dort festgehaltenen Erkenntnissen, das Handlungsfeld GSGF in einen größeren Zusammenhang der sektoralen Verwundbarkeit und ihrer Interdependenzen mit anderen Sektoren zu stellen.

Städtische Dichte hat im Zeichen des Klimawandels eine scheinbar gegensätzliche Bedeutung. Sie geht einher mit einer höheren Interaktionsdichte und positiven Skaleffekten, die sich etwa in guten Verkehrsquo- ten niederschlagen oder in einer hinreichend hohen Anschlussdichte für das städtische Fernwärmenetz. Auch bei Flächenverbrauch (als ökologischer Komponente) schneidet die verdichtete urbane Siedlungstypologie besser ab als etwa die Einfamilienhaussiedlung am Stadtrand oder im Speckgürtel. Aus Klimaschutzgründen ist städtische Dichte daher zu begrüßen, und Nachverdichtung ist eine sinnvolle Strategie, um Wachstumsdruck klimafreundlich ins Stadtgebiet zu integrieren (vgl. HIRSCHL / REUSSWIG/ WEISS et al. 2015). Die dichte Stadt ist die Stadt der kurzen Wege und bleibt damit das Leitbild zum urbanen Klimaschutz.

Auf der anderen Seite ist es gerade die bauliche und Bevölkerungsdichte, die den städtischen Raum überschneidet und ihn anfällig macht für seine Folgen. Zur höheren Expositionsdichte des verwundbaren Inventars treten im Falle des Siedlungstyps Stadt noch eine Reihe vulnerabilitätssteigernder Eigenschaften, die allesamt die gebaute städtische Umwelt zum tendenziell riskanten Nachteil ihrer Bewohner/-innen geraten lassen:

- Versiegelte Stadtoberflächen verhindern das rasche Versickern von Niederschlägen und leiten das sich sammelnden Wasser an möglicherweise unerwünschte Stellen.
- Versiegelte Flächen verhindern auch die Verdunstung aus Boden und Vegetation und die damit verbundenen Abkühlung.
- Die Oberfläche der Stadt – speziell der Dächer, Fassaden und Straßen – sind oft dunkel und reflektieren die Sonneneinstrahlung kaum, sondern heizen sich auf.
- Der umbaute Raum hindert den Luftstrom und damit den Luft- und Wärmeaustausch.
- Die Stadt ist voller großer und kleiner Wärmequellen, die das Stadtgebiet zusätzlich aufheizen. So geben die Autos Wärme dezentral ab, Kühlung und klimatisierte Bürogebäude an bestimmten konzentrierten Orten.
- Die komplexe Stadtstruktur mit ihrem modifizierten Mesoklima schafft vielfältige mikroklimatische Nischen, von denen einige noch ungünstigere Wirkungen auf Mensch und Gesundheit haben als die Stadt im Durchschnitt.

56 Das Klimawirkungsmodell des Sektors „Gebäude, Stadtentwicklung, Grün- und Freiflächen“ (GSGF) findet sich in Teil II des AFOK-Endbericht (Kap. 11).

Abbildung 41: Schematische Darstellung der städtischen Wärmeinsel.
Quelle: DEUTSCHER WETTERDIENST.

Wesentliches Kriterium für die Temperaturerhöhung bzw. Kühlung ist die Verfügbarkeit von Wasser für die Verdunstung. Ist dies nicht gegeben, können trockene Rasenflächen sogar heißer als befestigte Flächen werden (Abbildung 45).

Die funktionale Abhängigkeit der städtischen Temperaturdifferenzen von Bebauungs- und Vegetationsdichte kann auch für die gesamte Stadt Berlin nachgewiesen werden. Ordnet man die Berliner Bezirke nach dem Grad ihrer Versiegelung (Prozentanteil bebauter und Verkehrsfläche) aufsteigend an, dann sieht man zudem, dass gerade in höher versiegelten Gebieten auch die Temperaturdifferenz zwischen einem Wohngebiet und einer Grünfläche größer ist (vgl. Abbildung 46).
4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

Entsiegelungsmaßnahmen oder die Aufwertung von Grünflächen haben also gerade dort die größten Temperaturreduktionseffekte, wo die Versiegelung und damit der städtische Wärmeeffekt am größten sind. Das ist eine wichtige Feststellung mit Blick auf mögliche Anpassungsmaßnahmen in diesem Sektor (→ Kap. 4.2.2) und verweist darauf, dass das Phänomen der urbanen Hitzeinsel im Klimawandel nicht zwangsläufig verstärkt werden muss. Durch geeignete Anpassungsmaßnahmen kann auch die dicht bebauten Bezirke in bestimmten, noch auszuführenden Grenzen so „herabgekühlt“ werden, dass von ihrer Struktur und Charakteristik keine (zusätzliche) Gefährdung für Gesundheit und Wohlbefinden ihrer Bewohner/-innen ausgehen muss.

Die Ausgangsbedingungen dafür sind in Berlin zunächst nicht schlecht (vgl. Abbildung 47): Trotz der für den urbanen Raum charakteristischen Dominanz von Siedlungs- und Verkehrsflächen (57,7% oder 51.469 ha) spielen die Flächentypen Wald (18,3% oder 16.323 ha), öffentliche Grünflächen (12,9% oder 11.533 ha) sowie Wasserflächen (6,7% oder 5.961 ha) eine wichtige Rolle. Auch Landwirtschaftsflächen (4,4% oder 3.882 ha) weisen eine klimatische Entlastungsfunktion auf.

4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

Stadtwachstum als Herausforderung

59 Vgl. SENWTF 2015.

Ein Beispiel für solche indirekten Klimafolgen zeigt sich in der Form von Migrationsbewegungen. Die Dynamiken von Migration und Flucht weltweit werden gegenwärtig auch (und zukünftig vermutlich immer mehr) durch die Folgen des Klimawandels bestimmt. Neben politisch motivierter Flucht identifiziert etwa das BMZ als eine weitere Ursache für Migration „...zunehmende Umweltzerstörungen und die bereits spürbaren Auswirkungen des Klimawandels.“ und konstatiert weiter: „Die Schätzungen, wie viele Menschen durch die globale Klimaerwärmung gezwungen sein werden, sind ... 25 Millionen bis zu 1 Milliarde Menschen.“ (siehe BMZ o.J.).

Das Thema Flucht/ Migration spielt in Deutschland gegenwärtig eine große Rolle. Auch in Berlin haben diese Entwicklungen einigen Anpassungsdruck erzeugt – nicht zuletzt mit Blick auf die Bevölkerungsprognose. Ablesbar ist die Bedeutungsamkeit dieser Entwicklung etwa am sprunghafte Anstieg der Asylanträge (vgl. Abbildung 49).

Zum einen deshalb, weil die Verschiebung längerfristiger Klimaparameter wie der Temperatur- und Niederschlagsmuster oder des Meeresspiegels die Lebensbedingungen vieler Menschen vor allem im ländlichen Raum massiv beeinträchtigt, so dass sie an dem konkreten Ort keine Perspektive für sich und ihre Kinder mehr sehen.61

Abbildung 49: Entwicklung der Anzahl der Asylanträge in Berlin (2010 – 2015); Quelle: BAMF 2016a: 5.

Abbildung 47: Realisierungseinschätzung großer Wohnungsneubaustandorte bis 2025 und danach.

Die räumlichen Schwerpunkte dieses Bedarfs (vgl. Abbildung 50) liegen mehrheitlich in den oder am Rande der Verdichtungsbereiche, im innerstädtischen Bereich oder in den Kerngebieten der äußeren Stadt.

Im Bündnis für Wohnungsneubau zwischen Senat und den Wohnungs- und Bauwirtschaftlichen Verbänden (SENSTADTUM 2014b) verpflichten sich beide Seiten zu vermehrten Anstrengungen, um diesen Wohnungsbedarf – möglichst auch durch bezahlbaren Wohnraum – zu decken. Seitens des Senats wird eine verstärkte Koordination mit den Bezirken zugesagt, außerdem eine Stärkung der Bauverwaltungen, die Neuaustrichtung der Liegenschaftspolitik oder der Ausbau der Wohnungsbauförderung. Die Einhaltung von baukulturellen und Nachhaltigkeitszielen soll dabei gewährleistet sein.62

4.2.2.1 Vulnerabilitäten
Dennoch wird Berlin durch mehr Einwohner/-innen und mehr Gebäude größer, dichter und damit vulnerabler für den kommenden Klimawandel werden. Anforderungen der Klimaanpassung werden umso wichtiger.

Mit steigender Einwohnerzahl erhöht sich auch der Nutzungsdruck auf die Freiräume. Durch klimatische Veränderungen ist die Vegetation in den Grünräumen zusätzlichem Stress ausgesetzt. Gleichzeitig gewinnt

4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

die Funktion von Freiräumen als klimatische Ausgleichsräume zunehmend an Bedeutung. Im Klimawandel kommt den Freiräumen, bei steigenden Anforderungen, eine Schlüsselrolle zu. Diese werden zu einem ausschlaggebenden Bestandteil einer lebenswerten Stadt. Wo die Ausstattung mit Grün- und Freiflächen gering ist, besteht angesichts des Klimawandels besondere Vulnerabilität mit potenziell gravierenden Folgen für die örtliche Wohnbevölkerung63.

Mehr sommerliche Hitze – der Stadtkörper erwärmt sich

Gebäude und die Stadtoberfläche heizen sich auf – speziell „dunkle“ Oberflächen mit geringer Albedo – und beeinträchtigen die Wohn- und Lebensqualität in Gebäuden und im öffentlichen Raum.

63 Der Grad der Ausstattung mit Grün- und Freiflächen wird auch in der Karte zur Umweltgerechtigkeit im Berliner Umweltatlas ausgewiesen (vgl. SENSTADTUM 2015c).
4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

Die Erhöhung der Innenraumtemperatur am Arbeitsplatz und in öffentlichen Gebäuden und Schulen wirkt sich auf Konzentrations- und Leistungsfähigkeit aus, die ab 25°C deutlich abnimmt (vgl. BBSR 2015a). Hier können durch Produktivitätsverluste negative Folgen für die Berliner Wirtschaft entstehen (→ Kapitel 4.2.6). Neben der Lage des Gebäudes im Stadtraum spielen für die Innenraumtemperatur auch die Ausrichtung, die Beschaffenheit und die technische Ausstattung des Gebäudes eine entscheidende Rolle (vgl. Abbildung 51, oben). An diesen Faktoren können die Anpassungsmaßnahmen sowohl für Bestands- als auch für Neubaugebäude ansetzen (→ Kapitel 4.2.2.2).

Zunehmende Hitze- und Trockenperioden – Freiflächen unter Stress

Wenn Pflanzen nicht ausreichend mit Wasser versorgt werden, können die Flächen ihre Kühlwirkungen durch Evapotranspiration (Verdunstung über Boden und Vegetation) für die umliegenden erhitzten Stadtquartiere nicht entfalten. Wie das Beispiel des Tempelhofer Feldes zeigt, heizt sich ein ausgetrockneter sonnenexponierter Rasen tagsüber genauso stark oder sogar stärker auf als z.B. eine Betonfläche.

Dabei sind kühle grüne Rückzugsorte in der wachsenden Stadt besonders wichtig. Das Wachstum Berlins übt einen gewissen Druck auf die Mieten und Immobilienpreise aus, die trotz der Bemühungen der Politik weiter anziehen könnten. Der öffentliche Raum, speziell die kühleren Grünflächen Berlins, könnte auch deshalb eine höhere Bedeutung und eine gestiegene Nutzungsintensität erfahren, insbesondere bei sozial schlechter gestellten Gruppen, die sich weder große Wohnungen in weitgehend unbelasteter Wohnlage noch teure Wohnungsklimatisierung leisten können. Intensive Nutzung des städtischen Grüns, Stress der Vegetation in Trockenperioden und beschränkte Mittel für die Pflege und Unterhaltung der Grünflächen können in der Stadt im Klimawandel zur Minderung der Freiraumqualitäten und damit zu Einschränkung der Lebensqualität in der Stadt führen. Die Vegetation (vor allem Bäume) wird aufgrund der zunehmenden Hitze und Trockenheit unter Stress geraten. Nachpflanzung, Bekämpfung von Schädlingen, Verbesserungen der Standortbedingungen können zu erheblichen Kosten führen. Schon heute übernimmt auf ausgewählten Grünflächen im Bezirk Charlottenburg-Wilmersdorf die BSR Pflege- und Bewässerungsaufgaben in Abstimmung mit dem Grünflächenamt (→ Kap. 4.2.5). Kooperationen dieser Art könnten in Zukunft noch erforderlicher werden. Auch die Auswahl angepasster Arten (→ Kap. 4.2.5) ist geboten.

Mehr Starkregen – die überflutete Stadt

Im Zuge des Stadtwachstums ist eine höhere Verdichtung und Versiegelung der Stadt zu erwarten, die den Effekt solcher Starkregnereignisse noch verschärft wird, falls keine Gegenmaßnahmen ergriffen werden. Den Klimaprojektionen zufolge sind jedoch genau diese Starkregnereignisse in Zukunft vermehrt zu erwarten – Berlin muss sich also darauf vorbereiten, nicht nur in diesem Handlungsfeld (→ Kap. 4.2.3, Handlungsfeld Wasserhaushalt und Wasserwirtschaft).

64 Die Umweltgerechtigkeitskarte des Berliner Umweltatlas zeigt, dass gerade sozial schwächere Gruppen in Berlin auch häufig in Stadtgebieten wohnen, in denen die Ausstattung mit Grünflächen (Größe, Erreichbarkeit) besonders schlecht ist (SENSTADTUM 2015c). Der Nutzungsdruck gerade auf diese erreichbaren Flächen dürfte besonders ansteigen.
4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

Box 5: Vulnerable Gebäude und Quartiere

Abbildung 50: Vulnerable Gebäude und Quartiere. Quelle: SteP Klima KONKRET 2016, SenstadtUm /BGMR.

Wohnungen, wie häufig bei 4-Spänner-Grundrissen oder in Kleinwohnungen, können nicht quergelüftet werden. Damit wirken nächtliche Abkühlungen begrenzt. Vor allem in längeren Hitzeperioden führt dies zu Belastungen in den Wohnungen.

Starkregenereignisse führen zur urbanen Überflutung. Vor allem barrierefrei angelegte Geschäfte oder Wohnungen, aber auch bestimmte Infrastrukturen wie die U-Bahnen sind besonders gefährdet, wenn das Regenwasser von privaten Grundstücken oder öffentlichen Räumen nicht schnell genug abfließen kann. Da in Berlin keine Gefahrenkarten zur urbanen Überflutung zur Verfügung stehen, können Gegenmaßnahmen nicht gezielt in Risikogebieten entwickelt werden.
4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

In baulich dichten Gebieten sind die Folgen von Starkregenereignissen besonders gravierend. Die stadtweite zunehmende bauliche Verdichtung, die meist mit der Abnahme von Oberflächen mit Versickerungs- und Rückhaltefunktionen einhergeht, kann bei Starkregen zu urbanen Überflutungen führen.

Milde Winter – Reduzierung des Winterdienstes

Es gibt einige Auswirkungen des Klimawandels, die einen positiven Effekt im Handlungsfeld aufweisen, wie etwa die Abnahme der Eis- und Schneetage (z.B. Minderung des Tausalzeinsatzes und damit Verbesserung der Standortverhältnisse für Straßenbäume) oder die Erhöhung der Durchschnittstemperaturen im Winter (Reduzierung der Gebäudewärmebedarfs). Aber Vorsicht: Winterliche Kälteereignisse wird es auch in Zukunft immer wieder geben. Die entsprechende Infrastruktur (wie z.B. Winterräumfahrzeuge) wird nach wie vor vorzuhalten sein (→ Kap. 4.2.5).

Transsektorale Klimafolgen

4.2.2.2 Maßnahmen

Die Maßnahmen im Handlungsfeld Gebäude, Stadtentwicklung sowie Grün- und Freiflächen begegnen in erster Linie den Herausforderungen der zukünftig zunehmenden Hitze- und Starkregenereignisse, gegenüber denen eine besondere Vulnerabilität im Handlungsfeld besteht. Die Anpassungsmaßnahmen müssen sich in ihrer Ausrichtung auf drei Ebenen verorten: Maßnahmen, die zur klimatischen Qualifizierung der Stadt beitragen, also Maßnahmen, die im städtischen Raum wirken, instrumentelle und organisatorische Maßnahmen, die zur Umsetzung beitragen und Maßnahmen, die der Information und Sensibilisierung dienen.

Maßnahmen zur klimatischen Qualifizierung der Stadt

Als eine Schlüsselstrategie erweist sich die Qualifizierung von Freiflächen und gebautem Stadtgrün. Grünflächen und die Stadtoberfläche insgesamt können bei klimaoptimierter Gestaltung einen höheren positiven Beitrag zur stadtklimatischen Regulierung leisten – etwa indem die Wasserverfügbarkeit für den Pflanzenbestand verbessert und damit ihre Verdunstungskapazität erhöht wird.
4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

Auf gesamtstädtischer Ebene geht es um den Erhalt der großflächigen Ausgleichsräume, die über weite Strecken von Rändern zur gebauten Stadtstruktur großräumige Kühlwirkung haben, wenn die entsprechenden Frischluftschneisen zur Verfügung stehen (GSGF-1).

In räumlichen Klimaanalysen (siehe z.B. die Planungshinweiskarte Stadtklima) zeigt sich, dass für die Wirkung in den Quartieren besonders das qualifizierte kleinteilige Grün für klimatischen Ausgleich sorgt. Durch die Schaffung von für den Klimawandel qualifizierten öffentlichen Grün- und Freiflächen sowie Straßenräumen und Plätzen („Wohlfühlorte“) (GSGF-2) soll das Ziel der wohnungsnahen klimaoptimierten Begrünung und die breitere Einführung von entlastenden Aufenthaltsorten für die Anwohner/-innen erreicht werden.
4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

Insbesondere in hitzebelasteten Stadtgebieten kann durch die Neuanlage von Grün- und Parkanlagen, die Sicherung und Erhöhung des Anteils der Straßenbäume, die Erhöhung des Verdunstungspotenzials in Hitzeperioden sowie die Errichtung von Trinkbrunnen eine merkliche Entlastung erreicht werden. Die gezielte Anlage von „feuchten Flächen“ in der Stadt, die vor allem in den Trocken- und Hitzeperioden mit Wasser versorgt sind und so zur Kühlung beitragen, stellt eine wichtige Maßnahme dar. Sie zählt zu den Schlüsselmaßnahmen dessen, was hier „Schwammstadt“ genannt wird.

Neben der Schaffung neuer entlastender Freiräume ist die Sicherung, Qualitätssicherung und Steigerung der Resilienz des bestehenden Stadtgrüns (Grün- und Freiflächen, Straßenbäume) (GSGF-3) eine wichtige Stellschraube, klimatische Ausgleichsflächen zu entwickeln und zu erhalten. Eine nachhaltige Pflege ist wichtig, um die Wirksamkeit der Flächen zu sichern – dafür bedarf es einer entsprechenden finanziellen und personellen Absicherung.

Bei Neubauvorhaben besteht vielfältiges Potenzial, Maßnahmen der Klimaanpassung durch fachübergreifende Zusammenarbeit umfassend und dennoch ohne großen Mehraufwand/ Kostenerhöhungen umzusetzen. Die Entwicklung von Strategien zur klimatischen Entkoppelung von Neubauvorhaben (GSGF-4) trägt zur Umsetzung bei.

Instrumentelle und organisatorische Maßnahmen

Für die Umsetzung der Anpassungsmaßnahmen bedarf es instrumenteller und organisatorischer Maßnahmen, mit denen eine verstärkte Berücksichtigung der Anpassungsbelange in bestehende Planungs- und Bauprozesse erreicht werden kann.

Die Entwicklung innovativer Konzepte und Umsetzungsstrategien (vgl. GSGF-7) muss gefördert werden. Der Aspekt der Umsetzbarkeit von Maßnahmen und deren Zusammenwirken kann hier im „Reallabor“ überprüft werden. Schwerpunktraum sind die klimatisch belastete Innenstadt und Maßnahmen, die die graue Infrastruktur (z.B. Regenwasserkanäle) durch eine grüne Infrastruktur (begrünte, dezente Versickerungsmulden) ersetzen oder die Systeme resilienter machen.

Die Stadt kann durch eine Vielzahl an Maßnahmen gekühlt werden. Mit einem Mehr an Schatten können angenehme Freiräume entstehen, die Aufheizung von Gebäuden gemindert, die Rückstrahlung erhöht werden. Maßnahmen der Klimaanpassung sollten schließlich nicht dazu beitragen, dass die Ziele des Klimaschutzes untergraben werden; daher ist die Ausbreitung konventioneller Klimaanlagen einzudämmen (vgl. GSGF-10).
Information und Sensibilisierung

Klimaanpassung in der Stadtentwicklung wird nur mit der Identifikation und Unterstützung durch ein breites Akteursspektrum umsetzbar sein. Die Informiertheit der Akteure, die Stadt entwickeln und bauen, ist besonders in der Periode städtischen Wachstums ausschlaggebend. Wissen über Möglichkeiten und Synergieeffekte, aber auch Herausforderungen gegenüber anderen Belangen ist die Voraussetzung, dass eine wirksame Umsetzung stattfinden kann. Im Rahmen der AFOK Stakeholdergespräche und Workshops zeigten sich ein breites Interesse und Umsetzungswillen verschiedener Akteure aber auch der Bedarf an gebündelten Informationen.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSGF-1</td>
<td>Sicherung der klimatischen Entlastungsräume mit stadtwider Bedeutung</td>
</tr>
<tr>
<td>GSGF-2</td>
<td>Schaffung von für den Klimawandel qualifizierten öffentlichen Grün- und Freiflächen sowie Straßenräumen und Plätzen – Wohlfühlorte</td>
</tr>
<tr>
<td>GSGF-3</td>
<td>Sicherung und Steigerung der Resilienz des bestehenden Stadtgrüns (Grün- und Freiflächen, Straßenbäume)</td>
</tr>
<tr>
<td>GSGF-4</td>
<td>Entwicklung von Strategien zur klimatischen Entkoppelung von Neubauvorhaben</td>
</tr>
<tr>
<td>GSGF-5</td>
<td>Klimatische Qualifizierung der Stadtoberfläche</td>
</tr>
</tbody>
</table>

4.2.3 Wasserhaushalt, Wasserwirtschaft

Der städtische Wasserhaushalt ist durch seine enge Verknüpfung mit den globalen und regionalen Wasserkreisläufen unmittelbar von klimatischen Veränderungen betroffen. Bevor konkret auf die Vulnerabilitäten eingegangen wird (Kap. 4.2.3.1) und Maßnahmenvorschläge entwickelt werden (4.2.3.2) sei hier zunächst die bedeutung und Ausgangssituation im Handlungsfeld WW angesprochen.

Der über Berlin einkehrende Niederschlag wird auf drei Wegen durch das Stadtgebiet geleitet: (1) Er verdunstet in die niederen Atmosphärenschichten und kehrt direkt in den Regenkreislauf zurück, (2) er versickert im Boden und reichert das Grundwasser an, (3) er fließt – zum weitaus größten Teil über die Kanalisation – in die Oberflächengewässer ab.

Berliner Wasserbilanz

Von den 521 Mio. m³, die über das Stadtgebiet im langjährigen Durchschnitt jedes Jahr niedergehen, verdunsten 310 Mio. m³. Der mit 142 Mio. m³ zweitgrößte Teil des Niederschlagswassers versickert. Rund 69 Mio. m³ werden oberflächennah abgeleitet, davon 21 Mio. m³ über die Misch- und 48 Mio. m³ über die Trennkanalisation (Abbildung 56).

Abbildung 53: Links: Gesamtwasserhaushalt Berlins; langjährige Mittelwerte in Mio. m³ ohne Gewässer; Mitte: Wasserhaushalt Vegetationsfläche; rechts: Wasserhaushalt versiegelte Fläche.

65 Das Klimawirkungsmodell des Sektors „Wasserhaushalt, Wasserwirtschaft“ (WW) findet sich in Teil II des AFOK-Endberichts (→ Kap. 11).
66 Quelle: Links: Umweltatlas, online: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/e_abb/ac213_04.jpg; Zugriff: 11.11.15).
67 Quelle Mitte und rechts: Umweltatlas, online: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/dc213_01.htm; Zugriff: 12.11.15).
Abbildung 54: Oberflächenabfluss auf dem Berliner Stadtgebiet (Mittelwerte in mm/a). Quelle: UMWELTATLAS.68

Abbildung 55: Verdunstung auf dem Berliner Stadtgebiet (Mittelwerte in mm/a). Quelle: UMWELTATLAS69.

69 Siehe online: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/karten/pdf/02_13_5_2012.pdf.

Dort, wo die Stadt Abkühlung gebrauchen könnte, steht sie momentan nicht in ausreichendem Maße zur Verfügung. Ohne zusätzliche Anpassungsmaßnahmen wird sich der Versiegelungsgrad in der wachsenden Stadt erhöhen, die eingehenden Niederschläge werden direkt in die Vorfluter geleitet und stehen nicht für die Abkühlung zur Verfügung. Damit erhöht das nicht-klimangepasste Stadtwachstum die Anfälligkeit Berlins für die Folgen des Klimawandels.

Wasserver- und -entsorgung

Abbildung 56: Kernelemente der Berliner Wasserwirtschaft. Quelle: JOSWIG 2009.

Um Kanäle und Klärwerke von zu großen Regenwassermengen zu entlasten, hat die BWB sowohl im Kanalnetz selbst als auch in der Nähe von Pumpwerken Stauräume bzw. Regenrückhaltebecken gebaut. Dort kann das Abwasser zwischengespeichert und zeitverzögert zum Klärwerk geleitet werden.

So sollen die Gewässer vor Schmutzfrachten geschützt werden. Pro Jahr gelangten rund 37 Mio. m³ Kubikmeter Regenwasser und bei Wolkenbrüchen weitere rund sechs Mio. m³ Mischwasser mit organischen Schmutz- und Nährstoffen (z. B. Reifenabrieb, Hundekot) und 40 Tonnen Nährstoffe (z. B. Phosphorverbindungen etwa durch Abwasser, Laub und Blütenstaub) der Regenkanalisation bzw. durch überlaufende Mischwasserkanäle in die Berliner Gewässer. Dies belastet insbesondere Spree, Havel und Schifffahrtskanäle sehr, da sie nur langsam fließen und im Sommer wenig Wasser führen. Die Stoffe lassen Algen wachsen, trüben das Wasser und zehren Sauerstoff, was oft Fischsterben verursacht.

Sauerstoffdefizite in Oberflächengewässern

Die Berliner Bemühungen um die Sicherung der Qualität der Oberflächengewässer und die Einhaltung der Europäische Wasserrahmenrichtlinie (WRRL) sind wichtig und sollten fortgesetzt werden.

Hochwasserschutz

4.2.3.1 Vulnerabilitäten

Zunahme von Starkregenereignissen – Überlauf der Mischwasserkanalisation

In den nächsten Jahrzehnten werden die klimatischen Veränderungen für das Handlungsfeld Wasserhaushalt und Wasserwirtschaft in Bezug auf Vulnerabilität immer relevanter werden. Es kommt zu einer Zunahme der Starkregenereignisse, insbesondere von Starkregentagen in den Sommermonaten (+13% bis +85%). Bei gleichbleibendem oder steigendem Versiegelungsgrad erhöht sich dadurch die Wahrscheinlichkeit für Mischwasserüberläufe mit den entsprechenden Folgen. Die bereits heute mehrmals jährlich auftretende Belastung der Vorfluter durch die Mischwasserüberläufe in der Folge von Starkregenereignissen ist in

Zunahme von Starkregenergnissen – Urbane Überflutungen

Im Gegensatz zu den urbanen Überflutungsgebieten liegen für die Einzugsgebiete der Flüsse in Berlin Karten vor, aus denen die Überschwemmungsgebiete und die Gehäfen aus dem Hochwasser ablesbar werden. In Berlin ist von Hochwassern an Flüssen vor allem die Panke betroffen, für die bereits ein umfassendes Konzept für die Verbesserung des Hochwasserschutzes erarbeitet wurde.

Zunahme der Niederschläge im Winter

73 Die temporäre Erhöhung der anfallenden abzuführenden Abwassermengen in der Mischnahalanisation in Folge von Starkregen kann auch zur Überlastung der Kläranlagen führen. Besonders kritisch für die Abwasserbehandlung sind die temporären Schwankungen in den Mengen und Qualitäten.
Die Tagesspitze der Niederschläge im Winter ist die Bemessungsgrundlage für die Dimensionierung der Abwasserinfrastruktur. Bezogen auf den Jahresschnitt ist diese um ca. 250% „zu groß“ angelegt (Interview mit den Berliner Wasserbetrieben, 18.05.2015). Die Zunahme von Starkniederschlägen kann durch die Erhöhung der Abwasserspitzen Auswirkung auf die technische Bemessung und damit die Kosten der Abwassersysteme haben. Es wird offenbar, dass die klimatischen Auswirkungen auf die Regenwasserbewirtschaftung und Abwassersysteme in komplexer Wechselwirkung stehen. Im Projekt KURAS wird die Verknüpfung der Systeme mit der Schnittstelle Fläche-Kanal für Berlin untersucht. Welche weiterreichenden Untersuchungen notwendig sind, um die Vulnerabilitäten im Handlungsfeld präzise abschätzen zu können, sollten unter Berücksichtigung der Forschungsfragen und -ergebnisse aus KURAS beurteilt werden.

Zunahme der Trockenperioden und indifferente Entwicklung der Niederschläge im Sommer

Für die Niederschläge im Sommer wird eine indifferente (d.h. weder deutlich mehr, noch deutlich weniger) Entwicklung vorausgesagt. Allerdings ergibt sich eine veränderte Verteilung, mehr Starkregentage und eine deutliche Zunahme der Trockenphasen (dryspells) und Hitzewellen. In der Gesamtbilanz ist davon auszugehen, dass es phasenweise zu einer reduzierten Speisung der Fließgewässer aus den Einzugsgebieten in Brandenburg und Berlin kommt. Die Folge ist eine verminderte Fließgeschwindigkeit und damit eine geringere Durchmischung bzw. Anreicherung. In der Folge kann sich die Wasserqualität verschlechtern. (1.) Starkregenereignisse mit dem Anspringen der Mischwasserüberläufe sowie (2.) die hohen sommerlichen Temperaturen und (3.) die geringen Fließgeschwindigkeiten bestehenden Vorbelastungen – diese drei Faktoren verstärken sich gegenseitig in ihren Wirkungen. Die Berliner Gewässer (Flüsse, Kanäle, Seen) sind damit zukünftig hochgradig vulnerabel.

Hitze- und Trockenperioden – Riechende Stadt

Hitze- und Trockenperioden – steigender Wasserbedarf

Die für die Wasserqualität besonders problematische Kombination von langanhaltenden Hitze- und Trockenphasen mit plötzlich auftretenden Starkregenereignissen wird aller Voraussicht nach ebenfalls zunehmen. Dies bedeutet, dass sich gleichermaßen die Belastungsszenarien Unterlast und Überlast für das Abwassersystem verschärfen werden.

Transektorale Wirkungen – Städtische Verdichtung und Regenwasserbewirtschaftung

Mit zunehmender Verdichtung/ Versiegelung des Stadttraums verschärfen sich die Überflutungsgefahr (Handlungsfelder Verkehr; Gebäude und Stadtentwicklung; Wirtschaft) sowie die Überforderung der Kanalisation (mit negativen Auswirkungen auf die Gewässergüte, Erholungsqualität der Gewässer sowie die Gesundheit).

Box 6: Die Grenzen technischer Systeme im Klimawandel und die Bedeutung von Green Infrastructure

Mischwasserüberläufe

- **Szenario 1:** Zustand des Berliner Abwassersystems im Jahr 2010
- **Szenario 2:** Zustand des Berliner Wassersystems 2020 (Ausbau des Speichervolumens durch Regenwasserbecken, Barrieren, mobile Wehre und verbesserte Kontrollsysteme)
- **Szenario 3:** S2 plus zusätzliche Regenwasserbecken nahe der Pumpstationen.
- **Szenario 4:** S2 plus Entsiegelung von 20% im Einzugsgebiet
- **Szenario 5a:** S2 mit Temperaturanstieg um 1,9° C
- **Szenario 5b:** S2 mit Temperaturanstieg um 1,9° C und 20% mehr Niederschlag
- **Szenario 5c:** S2 Temperaturanstieg um 1,9° C und 20% weniger Niederschlag

Tabelle 16: Ergebnisse der Simulationen des Berliner Abwassersystems unter verschiedenen Szenarien.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5a</th>
<th>S5b</th>
<th>S5c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speichervolumen gesamt (10^3 m³)</td>
<td>291</td>
<td>280,1</td>
<td>316,7</td>
<td>280,1</td>
<td>280,1</td>
<td>280,1</td>
<td></td>
</tr>
<tr>
<td>Mischwasserüberlauf (10^4 m³)</td>
<td>4,9</td>
<td>4,6</td>
<td>3,3</td>
<td>4,9</td>
<td>6,6</td>
<td>3,3</td>
<td></td>
</tr>
<tr>
<td>Biologische Fracht (BOD₅, Tonnen)</td>
<td>535,7</td>
<td>273</td>
<td>247,3</td>
<td>181,9</td>
<td>273</td>
<td>330,7</td>
<td>206</td>
</tr>
<tr>
<td>Stickstofffracht (TKN, Tonnen)</td>
<td>25,6</td>
<td>18,2</td>
<td>16</td>
<td>12,3</td>
<td>18,2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Phosphorfracht (TP, Tonnen)</td>
<td>4,1</td>
<td>3</td>
<td>2,7</td>
<td>2</td>
<td>3</td>
<td>3,7</td>
<td>2,2</td>
</tr>
<tr>
<td>Suboptimale Sauerstoffkonzentration (Tage)</td>
<td>27,5</td>
<td>26,9</td>
<td>26,5</td>
<td>25</td>
<td>45</td>
<td>46,1</td>
<td>44</td>
</tr>
</tbody>
</table>

Dabei betrachtet Szenario 2 die technische Optimierung des bestehenden Abwassersystems, Szenario 3 fügt dem zusätzliche technische Speicher hinzu. Szenario 4 setzt nicht beim Abwassersystem an, sondern beim Oberflächenabfluss, der durch Entsiegelungsmaßnahmen im Einzugsgebiet vermindert wird. Die Szenarien 5a-c betrachten das technisch optimierte Abwassersystem des Jahres 2020 (S2) und variieren den Klimawandel: Einmal steigt nur die mittlere Sommertemperatur (S5a), einmal steigt auch der sommerliche Niederschlag (S5b), und einmal erhöht sich die Temperatur, aber der Niederschlag nimmt ab (S5c). In allen drei Fällen wird das Szenario 4 (mehr Entsiegelung) nicht weiter betrachtet. Die Simulationsergebnisse dieser Szenarien sind sehr aufschlussreich und können einer auf die Berliner (Abwasser-) Verhältnisse zugeschnittenen Klimaanpassungsstrategie wichtige Hinweise geben (vgl. Tabelle 16).
16). Es zeigt sich zunächst, dass der deutliche Ausbau des technischen Speichervolumens von 191.000 m³ auf 280.100 m³ in 2020 (S2) eine deutliche Absenkung des Mischwasserüberlaufs von 5,9 auf 4,9 Mio. m³ bringt. Auch die biologische Fracht (biologischer Sauerstoffbe- darf), die Stickstoff- und die Phosphorfracht gehen merk- lich zurück. Die Zahl der Tage mit suboptimaler Sauer-stoffkonzentration dagegen reduziert sich nur von 27,5 auf 26,9. Dieser Parameter wird auch durch den weiteren technischen Ausbau der Speicher (Regenwasserbecken, S3) nicht merklich reduziert, dieser bringt aber weitere 0,3 Mio. m³ an Rückgang im Mischwasserüberlaufvolumen. Ein- ne deutliche Verringerung der Mischwasseleinleitungen (von 5,9 Mio. m³ in S1 bzw. 4,9 Mio. m³ in S2 auf 3,3 Mio. m³) kann dagegen durch „nicht-technische“ Maßnahmen der Flächenentsiegelung erreicht werden.74 Hier sinkt die Zahl der Tage mit suboptimaler Sauerstoffkonzentration auf den niedrigsten Wert aller Szenarien, 25 Tage. Glei- ches gilt für die diversen Frachten im Abwasser. Unter Bedingungen des Klimawandels werden die technischen Fortschritte in der Reduzierung und Entfrachtung des Berliner Mischwasserüberlaufs (S2) großteils wieder zunichtegemacht. Die Zahl der Tage mit suboptimaler Sauerstoffkonzentration in der Spree werden davon kaum berührt – sie werden stärker durch den Anstieg der Sommertemperaturen beeinflusst, da die Spreetemperatur praktisch 1:1 die Lufttemperatur abbildet, in einer 1,9°C wärmeren Spree aber weniger Sauerstofflöslich ist.

Urbane Überflutung

Fazit: Aus grauer Infrastruktur eine grüne Infrastruktur machen!

4.2.3 Maßnahmen Wasserhaushalt, Wasserwirtschaft

Angesichts dieser kritischen Entwicklungen gilt es, die Berliner Wasserwirtschaft und den Wasserhaushalt insgesamt durch Anpassungsmaßnahmen weniger anfällig zu machen. Da die BWB über eine eigene Forschungsabteilung verfügen, die sich mit dem Thema Klimawandel intensiv befasst (vgl. die Beteiligung am Forschungsprojekt KURAS zur Zukunft der urbanen Regenwasserbewirtschaftung und Abwasserbehandlung), wird die Anpassungsfähigkeit dieses Sektors sehr gestärkt. Maßnahmenvorschläge können gut an bestehende Forschungsvorhaben und Planungsüberlegungen anknüpfen.

Die Anpassungsmaßnahmen im Handlungsfeld WWI beziehen sich auf Maßnahmen der Regenwasserbewirtschaftung, Anpassung der Anlagen der Abwasserinfrastruktur und Förderung der Wohlfahrtsbewirkung von Wasser in der Stadt im Klimawandel. Weiterhin werden Instrumente vorgeschlagen, um die Klimaanpassung im Handlungsfeld WWI zu fördern.

Die objektbezogenen Maßnahmen der Regenwasserbewirtschaftung (WW-1, WW-2) zielen auf einen am zukünftigen Klima orientierten Umgang sowohl von durchschnittlich anfallenden Niederschlagsmengen als auch von Extremereignissen ab.

Zusätzlich zu den objektbezogenen Maßnahmen erfordert der Querschnittscharakter der Herausforderung „Klimawandel“ eine Reihe von instrumentellen Maßnahmen, um die Anpassungsfähigkeit generell zu erhöhen (WW-9 bis WW-12). Dazu zählt eine Intensivierung der ressortübergreifenden Zusammenarbeit (einschließlich der gemeinsamen Überarbeitung der Regelwerke), die Bereitstellung von Risikokarten urbaner Überflutung für Eigentümer und Investoren sowie vermehrter Forschung zu Einzelfragen der Berliner Wasserbilanz.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW-1</td>
<td>Entkoppelung der Regenwasserbewirtschaftung von den zentralen Systemen</td>
</tr>
<tr>
<td>WW-2</td>
<td>Überflutungstaugliche Gestaltung der Oberfläche der Stadt</td>
</tr>
<tr>
<td>WW-3</td>
<td>Anpassung der Anlagen der Abwasserinfrastruktur an Starkregeneignisse</td>
</tr>
<tr>
<td>WW-4</td>
<td>Anpassung der Anlagen und des Betriebs der Abwasserinfrastruktur an Trockenheit und Hitzeereignisse</td>
</tr>
<tr>
<td>WW-5</td>
<td>(Trink-) Wasserqualität sichern</td>
</tr>
</tbody>
</table>
Objektbezogene Maßnahmen — Förderung der Wohlfahrtswirkung von Wasser in der Stadt im Klimawandel

WW-6	Steigerung der klimatischen Wirksamkeit von urbanen Gewässern
WW-7	Ausbau des Trinkbrunnennetzes Berlin
WW-8	Projekt Baden in der Stadt

Instrumentelle Maßnahmen

WW-9	Wassersensible Klimaanpassung als querschnittsorientiertes Thema
WW-10	Informationsbereitstellung für gefährdete Stadtgebiete (Risikokarten)
WW-11	Erforschung der Risiken und Chancen des Klimawandels für die Berliner Wasserbilanz (Wirkung auf Wasserversorgung/ Naturräume/ Oberflächengewässer/ Bausubstanz)

Tabelle 17: Maßnahmenvorschläge im Handlungsfeld Wasser, Wasserwirtschaft – Übersicht.
4.2.4 Umwelt und Natur

- leisten existenzielle Ökosystemleistungen (z.B. die natürliche Reinigung von Luft und Wasser, Grundwasserneubildung);
- stabilisieren bzw. verbessern insbesondere das durch den Urban Heat Island-Effekt überwärmte Stadtklima (→ Abschnitt 4.2.2);
- sind der Lebensraum vieler Tier- und Pflanzenarten, nicht zuletzt auch vieler bedrohter Arten;
- tragen zur physischen und psychischen Gesundheit der Stadtbewohner/-innen bei;
- verschönen das Stadtbild und tragen zum Stadttimage bei;
- bieten nicht-kommerzielle und weitgehend authentische Orte für Erholung, soziale Begegnung (auch zwischen den Kulturen) und Naturerfahrung – nicht zuletzt für Kinder, die hier entwicklungsförderliche Freiräume finden können.

Das Handlungsfeld Umwelt und Natur (UN) hat viele Facetten, die im Folgenden untersucht werden: Böden, Moore, Gewässer, Wälder, biologische Vielfalt und Kulturlandschaft. Aus Gründen der Übersichtlichkeit werden daher in Abschnitt 4.2.4.1 die Vulnerabilitäten zusammen mit den sie adressierenden Maßnahmen für jeden dieser Bereiche gesondert dargestellt. Abschnitt 4.2.4.2 enthält eine Übersicht aller Maßnahmen in der Zusammenschau.

4.2.4.1 Vulnerabilitäten

In diesem Kapitel werden die Vulnerabilitäten und die entwickelten Anpassungsmaßnahmen für den Boden, die Gewässer, das Artenspektrum, die Wälder und die Landwirtschaft Berlins ausführlicher vorgestellt. Die komplexen Zusammenhänge in diesem Handlungsfeld sind dem Klimawirkungsmodell zu entnehmen.

Bodenfunktionen durch Klimawandel gefährdet

75 Das Klimawirkungsmodell des Sektors „Umwelt und Natur“ (UN) findet sich im AFOK-Endbericht Teil II, Kap. 11.

76 Kelvin; thermodynamische Temperatureinheit zur Angabe von Temperaturdifferenzen.

Ein naturnaher Boden wirkt multifunktional und erfüllt wichtige, für die Stadt unverzichtbare klimarelevante Funktionen. Hervorzuheben sind dabei insbesondere die natürlichen Bodenfunktionen nach §2 (2) Bundes- Bödenutzungsgesetz (BBodSchG):

1. Lebensgrundlage und Lebensraum für Menschen, Tiere, Pflanzen und Bodenorganismen,
2. Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen,

Zudem schädigt die Trockenheit auch die im Boden lebenden Organismen – viele nehmen bei zu hoher Trockenheit eine inaktive Dauerform ein. Das reduziert die Zersetzungs geschwindigkeit der Streu, was eine Abnahme der Humusgehalte und Nährstoffverfügbarkeit sowie eine Verschlechterung des Bodenzustandes zur Folge hat.

Moor als Böden mit besonderer Klimafunktion

Moorböden leisten einen besonders wertvollen Beitrag zur Anpassung an den Klimawandel sowie zum Klimaschutz. Sie sind diejenigen Böden, die die größten Kohlenstoffmengen speichern, wenn sie intakt sind – global betrachtet sogar mehr als alle Wälder der Erde zusammen (ROßKOPF/ ZEITZ 2009). Außerdem
4.2.4 Umwelt und Natur

tenziehen sie der Landschaft überschüssiges Wasser und geben es in trockenen Zeiten wieder ab. Damit tragen sie zur Kühlung der Stadt und zur Regulierung des Wasserhaushaltes bei. Die 76 Moore Berlins

nehmen (vgl. Abbildung 61) etwa eine Fläche von 740 ha (0,8% der Landesfläche; HUB 2015a) ein. Diese Zahl scheint klein, aber ihre Rolle im Naturhaushalt der Stadt darf nicht unterschätzt werden. Für Berlin ist nachgewiesen, dass ca. 50% der Moorböden direkt zum Kaltlufttauschnchen, mehr als 50% zum Hochwasserschutz und mehr als 60% für den Wasserrückhalt in der Landschaft beitragen (HUB 2015). Umso gravierender ist der Umstand, dass der Klimawandel die Gefährdungssituation der Berliner Moorböden verschärft. Abgesehen von den unmittelbar anthropogenen Ursachen ist insbesondere die im Klimawandel prognostizierte Trockenheit eine der Hauptursachen für die Entwässerung/ Degradierung der Moore und den damit verbundenen Verlust an seltenen und schützenswerten Moorarten sowie in der Folge die Beeinträchtigungen der Klimafunktionen der bestehenden Moore.

Abbildung 58: Bedrohte Moore erbringen bedeutende Klimaschutzleistungen: Moor im Tegeler Forst (links) Foto: Andrea Brodersen; Berliner Moorböden im Klimawandel. Interaktive Moorgebietskarte (Ausschnitt); blaue Punkte bezeichnen die Moorgebiete (rechts). Quelle: HUB 2015.78

Sauerstoffdefizit in Oberflächengewässern

Hochwasserschutz

Eine vorläufige Hochwasserrisikobewertung hat ergeben, dass in Berlin 26 km der Gesamtlänge aller Fließgewässer (rund 6%) ein signifikantes Hochwasserrisiko besitzen. Diese bestehen für weite Teile der Erpe, Panke und Tegeler Fließ sowie der Spreeabschnitt zwischen Dämeritzsee und Köpenick (Müggelspree), für die Nachbarschaftsdienste und die Unterverhältnisse (SENSTADTUM o.J. i). Für diese Gebiete wurden bis 2015 Hochwasserrisikomanagementpläne erstellt und z.B. an der Panke bereits Maßnahmen umgesetzt (SENSTADTUM o.J. j). Insgesamt besteht in Berlin jedoch ein sehr geringes Hochwasserrisiko mit Folgen für die Gesamtpopulation, was auch die jüngsten Ereignisse an der Erpe im Juli 2011 und an der Panke im August 2012 zeigen.

Anders als bei den pluvialen Hochwässern und der Problematik des Überlaufs der Mischwasserkanalisierung (\(\rightarrow\) Kap. 4.2.3) wird der zu erwartende Klimawandel keine signifikante Erhöhung des Hochwasserrisikos mit sich bringen; insbesondere dann nicht, wenn die bereits begonnenen Hochwasserschutzmaßnahmen weiterhin konsequent umgesetzt werden. Vor diesem Hintergrund werden daher an dieser Stelle keine zusätzlichen Anpassungsmaßnahmen zum Hochwasserschutz entwickelt.

Beeinträchtigungen der Wälder

\(^{79}\) Aus Sicht des Sektors Wasser und Wasserwirtschaft wurde diese Thematik oben bereits untersucht (\(\rightarrow\) Kap. 4.2.3) und daher an dieser Stelle nur knapp behandelt.

\(^{80}\) Zu den Arten der Kanalisation und ihrer Verbreitung im Stadtgebiet: Karte 02.09.1, Umweltatlas (Ausgabe 2012).

\(^{81}\) Die zuständige Senatsverwaltung benennt auf ihrer Internetseite Kontaktdaten – wie etwa das Fischereiamt Berlin – an die sich Bürger/-innen im Fall der Beobachtung von Fällen von Fischsterben wenden können (siehe: http://www.stadtentwicklung.berlin.de/umwelt/fischerei/angelischen/de/fischsterben.shtml; Zugriff: 18.9.15).

Box 7: Grunewald – Wald des Jahres 2015

Abbildung 60: Naturschutzgebiet Sandgrube im Jagen 86 des Grunewalds. (Foto: LEILAH HAAG).

Abbildung 60: Naturschutzgebiet Sandgrube im Jagen 86 des Grunewalds. (Foto: LEILAH HAAG).

Dessen ungeachtet verfügt der Grunewald über zahlreiche schützenswerte Biotope (LSG, NSG, FFH), die gleichzeitig Lebensraum für seltene und schützenswerte Arten sind wie z.B. den Heldbock (Cerambyx cerdo) oder den Eremiten (Osmoderma eremita).

Um den Grunewald hinsichtlich seiner Funktionen für das Klima und die Trinkwasserversorgung Berlins weiter aufzuwerten, werden mithilfe des Berliner Mischwaldprogramms vermehrt Eichen angepflanzt, die laut Berliner Forsten hitzeresistenter sein sollen (KÖGEL 2015).

Der Wald ist zudem FSC zertifiziert, weshalb etwa auch auf Naturverjüngung gesetzt wird und dadurch einheimische Bäume gefördert werden, auf Chemikalien verzichtet, die Holzernte nachhaltig betrieben und durch Referenzflächen das Wissen über die Waldentwicklung ausgebaut wird.

Durch den „Dauerwaldvertrag“ ist die Waldfläche des Grunewalds bereits seit 100 Jahren gesichert und kann auch zukünftig als größtes zusammenhängendes Waldgebiet Berlins seinen Nutzen für die Stadt entfalten (BDF o.J.b).
Ein klimaplastischer Wald kann extreme Witterungseignisse sehr gut puffern. Dazu sollte er vor allem eine hohe Baumarten-Diversität aufweisen, die eine breite ökologische Amplitude abdeckt (JENSSSEN 2009). Die Wälder Berlins bestehen gegenwärtig zu 60,1% aus Kiefern und zu 4,8% aus anderen Nadelhölzern. Bei den Laubbäumen dominiert die Eiche (20,8%) vor der Buche (3,7%) und eine Reihe anderer Laubbaumarten (10,7%) (SENSTADTUM 2015b). Sie sind durch verschiedene Klimasignale herausgefordert.

Für die Berliner Wälder werden im Zuge des Klimawandels zwei Maßnahmen von großer Bedeutung sein. Die erste Maßnahme (UN-5) zielt auf die Sicherung, Pflege und Entwicklung der Wälder und hier insbesondere die weitere Förderung bzw. den Ausbau des Berliner Mischwaldprogramms, das seit 2012 zum Umbau von Kiefernreinbeständen hin zu stabilen und vitalen Mischwaldbeständen umgesetzt wird. Um bis 2060 den Waldumbau auf etwa der Hälfte der Berliner Waldflächen durch natürliche Verjüngung oder Pflanzung zu realisieren, muss die Maßnahme auf jährlich insgesamt ca. 100 ha durchgeführt werden (Interview Riestenpatt/ Münte 2015; siehe Teil II, Kap. 14).

Die zweite Maßnahme zum Schutz der Wälder (UN-6) beschreibt die Finanzierung der einen und Wiederinbetriebnahme der weiteren zwei Level-II-Beobachtungsflächen der Berliner Forsten. Die dort erhobenen Daten eignen sich aufgrund ihrer kontinuierlichen und periodischen Aufnahmezeitpunkte und ihrer Standorttreue auch sehr gut, um daraus Erkenntnisse zur langfristigen Entwicklung der Böden und der dynamischen Bodenprozesse abzuleiten (KAUFMANN-BOLL/ KAPPLER/ LAZAR et al. 2011) sowie die biologischen Systemreaktionen wie z.B. Kronenzustand, Bestandeswachstum und Bodenvegetation zu beobachten.82

Grünvolumen puffert Hitze

Veränderung der Artenzusammensetzung

Berlin ist eine Großstadt mit einer hohen biologischen Vielfalt, auf die die sich ändernden Bedingungen bezüglich Temperatur und Wasserhaushalt entscheidend Einfluss nehmen können. Mildere Winter, die eine verlängerte Vegetationsperiode bewirken, sind dabei ein maßgeblicher Faktor. Indirekt können sich auch klimabedingte Nutzungsänderungen (z.B. Zerstörung von Brutbiotopen in der Röhrichtzone durch Badegäste) oder bauliche Maßnahmen auf die biologische Vielfalt (z. B. auf den Lebensraum von Gebäudebrütern) auswirken bzw. zu Verbreitungsgebietverschiebungen führen (SENSTADTUM 2012a; KOWARIK 2010). In den durchgeführten Workshops mit den Berliner Expert/-innen wurden die folgenden, bereits ange-sprochenen Veränderungen in Flora und Fauna benannt, wobei der oben genannte Forschungsbedarf zu beachten ist:

- verändertes Zug- sowie Reproduktionsverhalten der Vögel,
- verändertes Wanderungs- sowie Reproduktionsverhalten von Amphibien,
- verändertes Laichverhalten der Fische,
Anstieg einzelner Arten, z.B. von Wildschweinbeständen, verändertes Reproduktionsverhalten von Schädlingen, veränderte Verbreitung von Pilzen, zunehmende Einwanderungen von Neobiota (wie Götterbaum, Riesenbärenklau, Spätblühende Traubenkirsche u.a.).

Aufgrund der hohen Unsicherheiten wird in diesem Bereich auf die Formulierung von Maßnahmen verzichtet und stattdessen der Forschungsbedarf adressiert. Ferner wird davon ausgegangen, dass die Maßnahmenvorschläge in den anderen Teilbereichen dieses Sektors (Böden, Moore, Gewässer, Wälder, Grünvolumen) einen erheblichen positiven Effekt auf die Erhaltung der Biodiversität im Berliner Klimawandel haben werden.

Verwendung von klima- und standortangepassten Arten

Berliner Naturschutz

In Berlin gibt es 40 Naturschutzgebiete (NSG), 55 Landschaftsschutzgebiete (LSG), 20 Geschützte Landschaftsbestandteile (GLB), 7 flächenhafte Naturdenkmale (ND), den Berliner Anteil des mit dem Land Brandenburg gemeinsam ausgewiesenen Naturparks Barnim, 15 Gebiete gemäß „Fauna-Flora-Habitat (FFH)-Richtlinien“, 5 Gebiete gemäß EU-Vogelschutzrichtlinien (SPA – Special Protected Area) sowie ca. 600 Naturdenkmale, die nicht in der Karte dargestellt sind (SENSTADTUM o.J. f). Rund drei Viertel des Berliner Waldes sind naturschutzrechtlich geschützt (vgl. Abbildung 62).

4.2.4 Umwelt und Natur

langfristig gesichert werden, z. B. Entsiegelungsmaßnahmen (SENSTADTUM 2014) oder die klimatisch relevante Aufwertung von Brachflächen.

Landwirtschaft, Kulturlandschaft und Gartenbau

85 Da der Landwirtschaftssektor von seiner Bedeutung her für Berlin insgesamt eher nachrangig zu bewerten ist, wird in diesem Konzept keine gesonderte Maßnahme für die Landwirtschaft beschrieben, sondern im Folgenden gesondert auf das Thema Kulturlandschaft eingegangen.
Beweidungsprojekt mit Abbildzüchtungen (Wildformen von Pferd und Auerochse) betrieben wird (SENSTADTUM o.J. g).

4.2.4 Umwelt und Natur

4.2.4.2 Maßnahmen

Vor dem Hintergrund der oben aufgezeigten Klimawirkungen, Vulnerabilitäten und Bedarfe für Anpassungsmaßnahmen werden im Folgenden alle Maßnahmen dieses Handlungsfeldes zusammenfassend in einer tabellarischen Übersicht mit Kürzeln (UN-x), Namen und Kurzbeschreibungen dargestellt (Tabelle 18); für eine ausführlichere Darstellung der einzelnen Maßnahmen sei auf die jeweiligen Maßnahmenblätter in Kap. 11.4 verwiesen.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN-1</td>
<td>Berücksichtigung der Belange des vorsorgenden Bodenschutzes in der räumlichen Planung</td>
</tr>
<tr>
<td>UN-2</td>
<td>Bodenmonitoring: Einrichtung innerstädtischer Bodendauerbeobachtungsflächen</td>
</tr>
<tr>
<td>UN-3</td>
<td>Schutz, Pflege und Renaturierung der Berliner Moorstandorte</td>
</tr>
<tr>
<td>UN-4</td>
<td>Fortführung und Ausbau des Berliner Moormonitorings</td>
</tr>
<tr>
<td>UN-5</td>
<td>Sicherung, Pflege und Entwicklung der Berliner Wälder</td>
</tr>
<tr>
<td>UN-6</td>
<td>Fortführung des ICP Forest Level-II-Monitorings</td>
</tr>
<tr>
<td>UN-7</td>
<td>Konzept und Pflan zliste zur Verwendung von klimaresilienten und standortangepassten Arten</td>
</tr>
<tr>
<td>UN-8</td>
<td>Einrichtung eines Flächenpools/ Ökokontos für Berlin</td>
</tr>
<tr>
<td>UN-9</td>
<td>Überprüfung von bestehenden Schutzgebieten</td>
</tr>
<tr>
<td>UN-10</td>
<td>Sicherung und Pflege der Berliner Kulturlandschaft</td>
</tr>
<tr>
<td>UN-11</td>
<td>Sicherung, Steigerung und Monitoring des innerstädtischen Grünvolumens</td>
</tr>
<tr>
<td>UN-12</td>
<td>Informationskampagne „Klimaanpassung im Kleingarten“</td>
</tr>
</tbody>
</table>

Tabelle 18: Maßnahmen im Sektor Umwelt und Natur - Übersicht.
4.2.5 Energie- und Abfallwirtschaft

Die Energiewirtschaft einerseits und die Abfallwirtschaft/ Entsorgung anderseits sind zentrale Komponenten städtischer Infrastruktur. Ihre Funktionieren ist für die Wirtschaft und das alltägliche Leben unverzichtbar, die Abschätzung ihrer Klima-Vulnerabilität von strategischer Bedeutung.

4.2.5.1 Vulnerabilität

Die Klimawirkungen und Vulnerabilität werden im Folgenden für die beiden Teil-Handlungsfelder Energiewirtschaft (4.2.5.1.1) und Abfallwirtschaft (4.2.5.1.2) nacheinander behandelt.

4.2.5.1.1 Energiewirtschaft

Störungen oder Ausfälle in Teilkomponenten des Energiesystems können sich rasch ausbreiten und in andere Sektoren überspringen. Damit gehört das Energiesystem zu den Kritischen Infrastrukturen (KRITIS), deren Störung oder Ausfall großflächige, nachhaltig wirkende Versorgungsengpässe sowie erhebliche Störungen im Gemeinwesen verursachen würde (BMI 2009).

Veränderung der Energienachfrage durch den Klimawandel

Im Zuge der allgemeinen Erhöhung der Durchschnittstemperaturen, insbesondere auch der milderen Wintermonate, wird sich die Anzahl der Heiztage deutlich verringern. Umgekehrt wird der Anstieg der sommerlichen Durchschnittstemperaturen, vor allem aber das häufigere Auftreten sommerlicher Hitzespitzen, die Nachfrage nach Gebäudekühlung erhöhen. Eine Quantifizierung und Bilanzierung der kontrastierenden Effekte wurde im Rahmen des AFOK nicht vorgenommen. Dennoch können einige Hinweise auf der Basis der Literatur gegeben werden.

Der Heizbedarf wird wesentlich durch die Zahl der Heiztage bestimmt – also der Tage, an denen eine bestimmte Außentemperaturen unterschritten wird. In Deutschland legen die technischen Richtlinien für Gebäude (VDI-Richtlinie 2067/ DIN 4108 T6) die Heizgrenze bei <15 °C (T_{mittel}) fest. Neben der Änderung des Klimas ist daher die Änderung der energetischen Eigenschaften des Gebäudesektors durch Sanierungsmaßnahmen und Neubau eine entscheidende Determinante des Wärmebedarfs. Da die Sanierungsrate in Berlin laut BEK von derzeit knapp 0,8% pro Jahr auf 1,5% (2025) bzw. 2,2% (2050) deutlich gesteigert werden soll, kann von einem zusätzlichen Trend zur Reduzierung des Gebäudewärmebedarfs ausgegangen werden (was – ceteris paribus – auch zu einer Senkung der Heiz- bzw. Betriebskosten führen dürfte).

87 Betrachtet man allein den Faktor Klimawandel so stellte eine auf ganz Europa bezogene Studie fest, dass von einem Rückgang der Heiztage um 11-20% ausgegangen werden, je nach Emissionsszenario (ISAAC/ VAN VUUREN 2009).
Im GHD-Bereich wird dabei 2030 bereits eine gewisse Sättigung eingetreten sein, während die privaten Haushalte – auf niedrigerem Niveau – auch bis 2030 weiter Zuwächse zu verzeichnen haben. Einsparungen beim Strombedarf für Klimatisierung von etwa 10% können dieser Studie zufolge dadurch erzielt werden, dass Menschen bereit sind, zugunsten des Energiesparens höhere Raumtemperaturen zu akzeptieren (ebd.) – also eine Verhaltensanpassung der Anpassung durch Technik-/Energieeinsatz vorziehen. Alternative Formen der Gebäudekühlung wurden in dieser Studie nicht berücksichtigt, werden aber für Berlin wichtig werden, wenn der steigende Kühlbedarf möglichst klimaneutral zu decken ist.

Im Rahmen des AFOK-Stakeholder-Workshops wurde die Einschätzung geäußert, dass der zu erwartende energetische Mehrbedarf für konventionelle Gebäudekühlung in Berlin höher ausfallen könnte als der Rückgang des Wärmebedarfs. Diese Vermutung wird von der Literatur nicht gedeckt (s.o.), könnte aber mit Blick auf die Kosten der Energiebereitstellung durchaus zutreffen, da (reine) Stromerzeugung teurer ist als Kraft-Wärme-Kälte-Kopplung.

89 Dabei muss beachtet werden, dass der Anteil klimatisierter Wohngebäude kleiner ist als der klimatisierter Nicht-Wohngebäude. MATTHES et al. (2013) gehen von einem deutlich geringeren Anstieg des Stromverbrauchs privater Haushalte für Gebäudekühlung von 0,3 TWh (2008) auf 0,7-0,9 TWh (2030) aus.
90 In einem ähnlichen Projekt für die brandenburgische Landeshauptstadt Potsdam konnte auf der Grundlage von Messdaten der Jahre 2000-2013 errechnet werden, dass der zusätzliche Bedarf für Strom zur Kühlung pro Grad Celsius (über 30 °C) 1,3% beträgt (REUSSWIG/ WETER/ HAAG et al. 2015: 27). Im betrachteten Zeitraum hatte die Ausstattung mit Geräten zur Gebäudekühlung kaum zugenommen.

Verwundbarkeiten des Stromnetzes

Einer der Gründe dafür ist die Tatsache, dass in Berlin – bedingt durch die besonderen baulichen und infrastrukturellen Gegebenheiten einer Großstadt – ein Großteil des Leitungsnetzes unterirdisch verläuft. Das Berliner Stromnetz hat eine Länge von 36.225 km und umfasst die Netzebenen Hochspannung (110 kV), Mittelspannung (10 kV) und Niederspannung (0,4 kv/400 V). Nur rd. 700 km Freileitungen (Hoch- und Niederspannung) gibt es im Stadtgebiet. Eine Berliner Besonderheit stellt die unterirdische 380 kV Diagonalverbindung durch das Stadtgebiet dar (50HERZ o.J.). 98,1% der Leitungen in Berlin sind unterirdisch verlegt und damit vor Blitzeinschlägen, Eis und Frost sicher.

Abbildung 64: Entwicklung der Anzahl der Strommasten im Berliner Stromnetz 2006-2033 (Prognose).
Quelle: STROMNETZ BERLIN GMBH 2015.

Abbildung 64: Entwicklung der Anzahl der Strommasten im Berliner Stromnetz 2006-2033 (Prognose).

Positiver Nebeneffekt dieser Aktivität ist, dass die Erdkabel nicht nur weniger störanfällig für extreme Witterungsverhältnisse sind, sondern auch mehr Strom transportieren können als Freileitungen. Allerdings geht diese vulnerabilitätsenkende „Abschottung“ des Stromnetzes durch Bodenverkabelung mit zwei

Durch den hohen Anteil an Kraft-Wärme-Kopplung (KWK) in Berlin steigt die Eigenerzeugung in den Wintermonaten an, in denen die Wärmeerzeugung im Vordergrund steht. Im Sommer sinkt die Eigenerzeugung, die Stromimporte steigen an. Da im „Importraum“ Berlins – also in Brandenburg und in anderen Bundesländern – der Freikabel-Anteil des Stromnetzes deutlich höher liegt, besteht ganzjährig, aber vermehrt im Sommer, eine indirekte Vulnerabilität der Berliner Stromversorgung gegenüber wetterbedingten Netzstörungen (Blitzschlag, Sturmschäden, im Winter: Vereisung). Auch klimawandelbedingte Beeinträchtigungen der Stromerzeugung – z.B. durch Produktionsdrosselung wegen verminderter Kraftwerksekühl-

93 Das Netzwerk Vulnerabilitätsanalyse sieht nur Freileitungen als gefährdet an, Erdkabel gelten dagegen als nicht anfällig; sie könnten „durch die Versorger im Normalbetrieb bewältigt werden“ (BUTH/ KAHLENBORN/ SAVELSBERG et al.: 531).

Blackout-Gefahr

In einer vom Hamburgischen Weltwirtschafts-Institut (HWWI) erarbeiteten Studie aus dem Jahr 2013 wurden die Kosten eines Stromausfalls von weniger als einer Stunde für deutsche Landkreisen und Kommunen berechnet und miteinander verglichen (vgl. Abbildung 69). In die entsprechende Kennzahl „Value of Lost
4.2.5 Energie- und Abfallwirtschaft

Auch die Altersstruktur der wichtigen Elemente des Berliner Stromnetzes stellt einen klimawandel-unabhängigen Risikofaktor dar, da sie auch kontinuierliche Instandhaltungs- und Reparaturarbeiten erforderlich macht (Abbildung 71). Angesichts des Ziels, die Berliner Freileitungen mittelfristig in den

Kraftwerkskühlung: Ein Vulnerabilitätsfaktor auf dem Rückzug

Längere Trockenphasen und damit verbundene niedrige Pegel der Berliner Gewässer können allerdings Auswirkungen auf den Schiffverkehr und somit auf die Anlieferung von Kohle für einige Kraftwerke haben (vgl. BUNDESREGIERUNG 2008: 34). Auch die Bereitstellung von Biomasse für die Energieerzeugung kann im Falle einer länger andauernden Trockenheit kritisch werden.

Kälte-, Sturm- und Niederschlagsbedingte Vulnerabilitäten

96 In heißen Sommer, wenn die Temperatur der Spree ansteigt und der Durchfluss am Pegel Mühlendamm auf unter 8,0 m³/s sinkt, wird für das HKW Klingen berg eine Ausnahmegenehmigung erteilt, wonach die maximale Einleittemperatur von 28 auf 30° C erhöht werden darf. Im heißen Sommer 2003 wurde diese Genehmigung nicht in Anspruch genommen, weil Klingenberg seine Entnahmemenge von ca. 0,75 m³/s (Januar-Mai) auf fast 1,5 m³/s erhöhte. Die Spree führt in solchen Extremlagen noch ca. 5 m³/s Wasser (DR. SCHUMACHER 2006: 57 f.).

Abfallwirtschaft

Belastungen für die Mitarbeiter der Abfallentsorgung

Hohe Temperaturen und die meist damit einhergehende starke Sonneneinstrahlung stellen zunächst eine hohe Belastung für die Mitarbeiter/-innen dar, vor allem im Außendienst (Abfallsammlung, Außenanlagen der Abfallverarbeitung, Straßenreinigung). Der Flüssigkeitsbedarf steigt, die thermische Regulierung und der Kreislauf werden stärker belastet. Die erforderliche Schutzkleidung kann dies verschärfen.

97 Abfallmengen werden in Megagramm (Mg) angegeben (wobei: 1 Mg = 10^6 g = 1.000 kg = 1 Tonne).
98 Neben abfallwirtschaftlichen Gründen sind es vor allem auch energiewirtschaftliche und Klimaschutzüberlegungen, die hier eine Rolle spielen. In der Anlage Ruhleben werden derzeit rd. 63.000 t Bioabfälle vergoren, das gewonnene Gas (rd. 2.000 t Biogas) wird nach Aufbereitung (Entschwefelung, CO₂-Entzug) ins Netz gespeist und für die Müllfahrzeuge dezentral an drei Standorten wieder entnommen. Das spart jährlich 2,5 Mio. Liter Diesel, 63% der Müllsammelstrecke werden klimaneutral zurückgelegt. Durch den energetischen Ersatz von Dieselkraftstoff kann der Ausstoß von insgesamt rund 12.000 Tonnen CO₂ vermieden werden. Gärreste werden zu Kompost und Dünger weiterverarbeitet (BSR 2013).
4.2.5 Energie- und Abfallwirtschaft

Weiterhin wird der Klimawandel mit einer erhöhten UV-Belastung einhergehen, was das Hautkrebsrisiko der Beschäftigten steigern kann. Bereits heute werden hier Maßnahmen zum Schutz der Mitarbeiter/-innen vor Hitze und Sonnenstrahlung ergriffen, z.B. werden Sonnenschutzmittel und gekühlte Getränke in einer Kühlbox im Müllfahrzeug vorgehalten. Der durch den Klimawandel induzierte markante Anstieg der Durchschnittstemperaturen, vor allem der heißen Tage, stellt damit ein zusätzliches Arbeitsschutz- bzw. Gesundheitsrisiko für die Beschäftigten dar, dem mit geeigneten Maßnahmen begegnet werden muss.

Entsorgung Bioabfall

Mildere Winter, Stürme und Starkregen
Traditionell stellt der Winterdienst einen saisonalen Arbeitsschwerpunkt der Abfallwirtschaft dar. Im Zuge des Klimawandels werden die Winter aber milder werden, was unter anderem dazu führt, dass Berlins Straßen und Plätze weniger häufig von Schnee und Eis beräumt werden müssen. Entsprechend weniger Kapazitäten müssten vorgehalten und Einsätze gefahren werden, was auch zu Kostenentlastungen führen dürfte. Gleichwohl wird es auch in einem zukünftig milderen Klima immer wieder harte Winter mit hohen Schnee- und Eislasten geben. Stürme und Starkregenereignisse stellen auch unter aktuellen Bedingungen für die Abfallwirtschaft eine Herausforderung dar. Äste und Laub verstopfen die Abflüsse und Gullys, Straßenabschnitte werden überschwemmt und behindern den allgemeinen Verkehr, auch die Abfallentsorgung selbst. Das bindet regelmäßig erhebliche Kapazitäten. Während die von AFOK berechneten Klimaszenarien für Sturmereignisse keinen klaren Trend zu einer Häufigkeits- oder auch Intensitätszunahme erkennen lassen, ist die Zunahme von Starkregenereignissen hoch wahrscheinlich.

4.2.5.2 Maßnahmen Energie- und Abfallwirtschaft

Energiewirtschaft
Im Bereich der Energiewirtschaft befassen sich die identifizierten Maßnahmen einerseits mit der politischen Rahmengesetzgebung und der betrieblichen Steuerung von Anpassungshandeln, andererseits sind die Maßnahmen operativer und baulicher Natur.

Wesentliches Ziel der identifizierten operativen und baulichen Maßnahmen entsprechend der Handlungserfordernisse in der Energiewirtschaft ist die Verbesserung und Optimierung der Energieinfrastruktur mit dem Fokus Netze und Speicher (ENA-4, ENA-5). Durch diese Infrastrukturbereiche müssen wichtige Systemdienstleistungen zur Gewährleistung der Versorgungssicherheit und der Adressierung zukünftiger

Nicht vergessen werden darf, dass sich mit den gegebenen Klimaänderungen auch neue Chancen und Entwicklungsoptionen für die Berliner Energiewirtschaft ergeben werden – speziell im Bereich klimafreundliche Kältetechnik/ Gebäudekühlung.

Abfallwirtschaft

Angesichts der potenziellen Folgen des Klimawandels für die Berliner Abfallwirtschaft sind Maßnahmen zu ergreifen, die die Abfallsammlung speziell während sommerlicher Hitzespitzen gewährleisten (ENA-6). Dies betrifft insbesondere die Beschäftigten der Müllabfuhr und der Straßenreinigung, die vorwiegend im Außenbereich körperlich tätig und damit den Witterungsverhältnissen direkt ausgesetzt sind.

Durch die breit angelegte Einführung der Biotonne und angesichts des Ziels, noch mehr organische Anteile von der Restmülltonne in diese umzuschichten, kommt in diesem Zusammenhang der Minderung von Geruchsbelästigungen sowie der verstärkten Vermeidung von Abfällen im Klimawandel eine erhöhte Bedeutung zu (ENA-7).

Maßnahmen Handlungsfeld Energie- und Abfallwirtschaft in der Übersicht

Die oben entwickelten Anpassungsmaßnahmen für das Handlungsfeld ENA werden in Tabelle mit Namen und Kurzbeschreibungen zusammen gefasst; für eine ausführlichere Darstellung aller Einzelmaßnahmen sei auf die Maßnahmenblätter im Anhang (→ Kap. 10) verwiesen. Neben den Maßnahmen für den Bereich Abfallwirtschaft (ENA-6, -7) sind im Bereich Energiewirtschaft Vorschläge zu unterscheiden, die die politische Rahmensetzung und die betriebliche Steuerung betreffen (ENA-1 bis -3) von operativ-BAulichen Maßnahmenvorschlägen (ENA-4, -5).
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Politische Rahmensetzung und betriebliche Steuerung</td>
</tr>
<tr>
<td>ENA-1</td>
<td>Förderung energieeffizienter Kühlsysteme im Neubau und Bestand durch Modellvorhaben, zzgl. Information und Beratung von Immobilieneigentümern</td>
</tr>
<tr>
<td>ENA-2</td>
<td>Institutionelle Vorsorge gegenüber potenziellen Störungen in der Stromversorgung</td>
</tr>
<tr>
<td>ENA-3</td>
<td>Verstärkte Abstimmungen bei der Planung und Realisierung von Energieanlagen mit Umweltbelangen</td>
</tr>
<tr>
<td></td>
<td>Operative/ bauliche Maßnahmen</td>
</tr>
<tr>
<td>ENA-4</td>
<td>Verbesserung und Optimierung der Energieinfrastruktur mit Fokus Netze</td>
</tr>
<tr>
<td>ENA-5</td>
<td>Verbesserung und Optimierung der Energieinfrastruktur mit Fokus Speicher</td>
</tr>
</tbody>
</table>
4.2.6 Industrie, Gewerbe und Finanzwirtschaft

Abbildung 69: Branchenstruktur der Berliner Wirtschaft (Stand: 2014); Anteile an der Bruttowertschöpfung in Prozent. Quelle: Eigene Darstellung nach Daten des AfS 2015a: 10; gerundet.

4.2.6.1. Vulnerabilität der Wirtschaft

In der gegenwärtigen Diskussion über die „Freihandelsabkommen“ TTIP, CETA, die planmäßig eine signifikante Ausweitung des internationalen Handels induzieren, sind daher nicht nur die befürchteten Einschränkungen des lokalen (klima-)politischen Spielraums (vgl. DEUTSCHER STÄDTETAG et al. 2014), sondern auch die „Climate Smartness“ von Handelsstrukturen zu berücksichtigen. Hier besteht weiterer Forschungsbedarf.

100 Vgl. im Folgenden das Klimawirkungsmodell des Sektors „Industrie, Gewerbe und Finanzwirtschaft“ (IGF) in Teil II des AFOK-Endberichts (Kap. 11).

In der gegenwärtigen Diskussion über die „Freihandelsabkommen“ TTIP, CETA, die planmäßig eine signifikante Ausweitung des internationalen Handels induzieren, sind daher nicht nur die befürchteten Einschränkungen des lokalen (klima-)politischen Spielraums (vgl. DEUTSCHER STÄDTETAG et al. 2014), sondern auch die „Climate Smartness“ von Handelsstrukturen zu berücksichtigen. Hier besteht weiterer Forschungsbedarf.
Vulnerabilitäten nach Klimasignalen

Dieser Befund ist besonders für die Berliner Wirtschaft mit ihrem hohen Dienstleistungsanteil relevant, insbesondere für diejenigen Dienstleistungsbranchen, die nur über geringe Gebäudekühlung verfügen (z.B. Handel, soziale/öffentliche Dienstleistungen, generell eher kleinere und mittlere Unternehmen).

Dieser Befund ist besonders für die Berliner Wirtschaft mit ihrem hohen Dienstleistungsanteil relevant, insbesondere für diejenigen Dienstleistungsbranchen, die nur über geringe Gebäudekühlung verfügen (z.B. Handel, soziale/öffentliche Dienstleistungen, generell eher kleinere und mittlere Unternehmen).

Die zu erwartende Zunahme milderer Winter bringt auch Vorteile für die Berliner Wirtschaft mit sich, insbesondere für die Baubranche, die mit weniger kälte- und frostbedingten Arbeitseinschränkungen zu rechnen hat und deren Saison sich damit verlängert. Dies könnte dazu führen, dass sich die Winterbauförderung reduziert, erfordert aber auch zusätzliche Maßnahmen der Aufbeute sicherung. Für das Klimasignal Stürme konnten für Berlin keine eindeutigen Zukunftstrends identifiziert werden.¹⁰²

¹⁰² Für die Klimasignale Hagel, sowie Gewitter/ Blitz, die heute bereits spürbare Schäden hervorrufen, lieferten die AFOK-Szenarien keine Aussagen (vgl. Kap. 3).

Box 8: Auswirkungen des Klimawandels auf die Finanzwirtschaft

Die Rolle als Finanzplatz Nr. 1 in Deutschland hatte Berlin als Folge des zweiten Weltkriegs und der Teilung Deutschlands an Frankfurt am Main abgegeben. Mit wiedererlangter Hauptstadtfunktion im wiedervereinigten Deutschland ging ein gewisser Bedeutungszuwachs der Branche einher, sodass das Kredit- und Versicherungsgewerbe (als Teil der oben genannten Branche „Finanz- und Unternehmensdienstleistungen, Immobilienwirtschaft“; Abbildung 72) heute etwa 3,5% zur Bruttowertschöpfung im Land beiträgt.

Sie kann sowohl selbst betroffen sein von Klimafolgen als auch wichtige Beiträge zu einer besseren Anpassung an unausweichliche Folgen leisten. Das Thema Klimawandel spielt für die Finanzwirtschaft weltweit seit einigen Jahrzehnten eine zunehmende Rolle.

Die mit dem Klimawandel einhergehende Zunahme wetterbedingten Naturkatastrophen geht mit steigenden Schadenssummen einher (Abbildung 73). Klimafolgen stellen speziell ein signifikantes Risiko für die Versicherungsbranche, und hier insbes. für die Rückversicherer dar.
4.2.6 Industrie, Gewerbe und Finanzwirtschaft

Gleichzeitig bieten sich Chancen für die Entwicklung neuer Versicherungsprodukte, die bei der Bewältigung des Problems „Klimawandel“ helfen können.

Vulnerabilität der Wirtschaft nach Wirtschaftszweigen

- **Wasserintensität.** Wasserverbrauch der Branche pro Einheit Output.
- **Energieintensität.** Energieverbrauch der Branche pro Einheit Output.
- **Infrastrukturabhängigkeit.** Grad der Abhängigkeit von Transportwegen (z.B. Importe, Exporte).
- **Inputdiversität.** Grad der Abhängigkeit einer Branche von Zulieferungen aus anderen Branchen.

Diese Teilindikatoren wurden aus den Durchschnittswerten für die deutsche Wirtschaft übernommen. Ergänzt wurden die Indikatorwerte durch qualitative Abschätzungen der Schadenspotenziale der Berliner Wirtschaftsbranchen sowie ihrem Anpassungspotenzial, die sich aus den Stakeholder-Interviews, den Workshops sowie den verfügbaren Daten ergaben. Besonders berücksichtigt wurden dabei die Aspekte:

- **Bau-, Infrastruktur- und Anlagenschäden.** Potenzielle Betroffenheit des Kapitalstocks durch Extremereignisse und Verschiebungen klimatischer Mittelwerte.
- **Gesundheits- und Produktivitätseinbußen.** Potenzielle Betroffenheit der Mitarbeiter/-innen durch Extremereignisse.
- **Konnektivitätsrisiken.** Abhängigkeit von Risiken und Schäden in anderen Branchen bzw. Schadensfortpflanzung in andere Bereiche (z.B. Stromunterbrechung, ungeklärte Abwassereinleitungen).104

Werden zunächst nur die Werte für die Vulnerabilität der Berliner Wirtschaft (vgl. Abbildung 75) betrachtet, dann fällt auf, dass diese zwischen einer sehr geringen und einer sehr großen Verwundbarkeit variiert.

Die besonders vulnerablen Branchen sind das Gesundheits- und Sozialwesen, die Wasser- und Energieversorgung sowie die Finanz- und Versicherungswirtschaft. Beim Gesundheitswesen geht es dabei weniger um die direkte Verwundbarkeit etwa der Gebäude oder Abläufe, als vielmehr um die indirekten Auswirkungen, die die Gesundheitsrisiken vulnerabler Bevölkerungsgruppen für das Gesundheitssystem bedeuten (Kapazitäten im Rettungswesen, Notfallmedizin, Pflegemehraufwand). Während einzelne Krankenhäuser (z.B. die Charité) bereits Forschung zur klimawandelbedingten Veränderung von Krankheitsbildern betreiben, Fortbildungsmaßnahmen durchführen und mit gekühlten Krankenzimmern experimentieren, sind andere kaum auf den Klimawandel vorbereitet. Das Anpassungspotenzial innerhalb dieser Branche insgesamt wird daher als gering bis mittel eingestuft.

Die relativ hohe Vulnerabilität der Berliner Wasserwirtschaft resultiert nicht nur aus den hohen Index-Werten für diese Branche bundesweit, sondern auch aus einer qualitativen Einschätzung der spezifischen Klimawandelrisiken für die Berliner Wasserwirtschaft: Nach Szenarioberechnungen des Projektes MIA-CSO (→ Kap. 4.2.3) kann auch in einem, mit hohem finanziellen Aufwand technisch optimierten Misch-Abwassersystem der Klimawandel (insbes. durch die Zunahme von Starkregenereignissen) dazu führen, dass

103 Die Unsicherheiten des Klimas in Berlin im Jahr 2050 werden als geringer eingeschätzt als die hinsichtlich der Berliner Wirtschaftsstruktur zu diesem Zeitpunkt.

104 Es muss betont werden, dass es sich bei diesen drei letzten Punkten um qualitative Abschätzungen handelt, die mit Unsicherheiten sowohl der Einschätzung als auch der Bewertung der entsprechenden Effekte verbunden sind. Dennoch wurde nicht darauf verzichtet, weil dadurch eine differenzierte Betrachtung der Berliner Wirtschaftsbranchen vorgenommen werden konnte.
der Mischwasserüberlauf und die gesamte Schmutzfracht zu- und nicht abnehmen. Ohne zusätzliche Anpassungsmaßnahmen ist die Berliner Wasserwirtschaft also sehr anfällig für den künftigen Klimawandel.

Als relativ wenig verwundbar wird z.B. der Bereich der unternehmensbezogenen Dienstleistungen oder von Information und Kommunikation eingeschätzt, weil dort weder die physische Infrastruktur noch die Wertschöpfungsprozesse noch deren Interdependenzen mit anderen Branchen als kritisch eingestuft werden.

Dieses letzte Beispiel zeigt auch, dass diese explizit ökonomisch fokussierte Vulnerabilitätsabschätzung eine multikriterielle und integrierte Betrachtung, wie sie in Kapitel 4.2 insgesamt vorliegt, nicht ersetzen kann. Rein wirtschaftlich betrachtet, also nur unter der Perspektive des Wertschöpfungsbeitrags (oder alternativ auch: der Beschäftigung), könnte man die klimabezogene Verwundbarkeit der Berliner Land- und Forstwirtschaft als marginal ausklammern, da ihr Wertschöpfungsbeitrag gering ist und müsste sie auch in der Anpassungsstrategie kaum berücksichtigen. Aber – und damit zeigen sich auch die Grenzen einer rein wirtschaftlichen Betrachtung – damit würde man der systemischen Bedeutung etwa der Berliner Forsten für
die Stadt überhaupt nicht gerecht: Die Ökosystemdienstleistungen der Forsten, ihr Freizeit- und Erholungswert, ihre wichtige Rolle für Naturschutz und Biodiversität – dies alles würde vernachlässigt.105

In diesem Sinne sind die oben genannten Ergebnisse zwar nicht als umfassende Bewertung der Vulnerabilität der genannten Sektoren in multidimensionaler Hinsicht zu verstehen, gleichwohl aber als eine branchenspezifische Bewertung unter den engen – aber ihrerseits auch nicht zu unterschätzenden – Gesichtspunkten der wirtschaftlich gewichteten Branchenvulnerabilität.

4.2.6.2 Maßnahmen Industrie, Gewerbe und Finanzwirtschaft

Zentrales Ziel der im Handlungsfeld Industrie, Gewerbe und Finanzwirtschaft identifizierten Maßnahmen ist die Stärkung der Ansprache und Mobilisierung der Akteure der Berliner Wirtschaft für das Thema der Klimaanpassung.

Umsetzung von Anpassungsmaßnahmen in der Berliner Wirtschaft auch mit neuen Chancen einhergeht. Neue Produkte und Dienstleistungen etwa im Bereich der (klimafreundlichen) Gebäudekühlung oder auch des Risikomanagements (Finanzdienstleistungen) eröffnen sowohl etablierten Unternehmen als auch innovativen Star-Ups neue Marktchancen und können damit zu Wertschöpfung und Beschäftigung in Berlin beitragen.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilisierung und Qualifizierung</td>
<td></td>
</tr>
<tr>
<td>IGF-1</td>
<td>Verbesserte Bereitstellung von verlässlichen Wetter-Prognosen</td>
</tr>
<tr>
<td>IGF-2</td>
<td>Entwicklung und Verbreitung von Schulungsangeboten/-materialien zur Prävention von Schäden durch Wetterextreme und verändernde Wetterereignisse</td>
</tr>
<tr>
<td>IGF-3</td>
<td>Einrichtung von Runden Tischen zum Erfahrungsaustausch und zur Vernetzung zwischen staatlichen Institutionen, Verbänden und Unternehmen</td>
</tr>
<tr>
<td>Politische Rahmensetzung und betriebliche Steuerung</td>
<td></td>
</tr>
<tr>
<td>IGF-4</td>
<td>Anpassung der Bauförderung und von Ausführungsfristen für Bauaktivitäten</td>
</tr>
<tr>
<td>IGF-5</td>
<td>Erstellung und Umsetzung betrieblicher Klimaanpassungskonzepte</td>
</tr>
<tr>
<td>IGF-6</td>
<td>Erstellung von branchenspezifischen Klimaanpassungskonzepten</td>
</tr>
<tr>
<td>IGF-7</td>
<td>Flexibilisierung von Arbeits- und Öffnungszeiten</td>
</tr>
<tr>
<td>Operative/ bauliche Maßnahmen</td>
<td></td>
</tr>
<tr>
<td>IGF-8</td>
<td>Verbesserung des sommerlichen Wärmeschutzes bei gewerblichen (Neu-)Bauten, inkl. Beratung und Begleitung von Unternehmen</td>
</tr>
<tr>
<td>IGF-9</td>
<td>Physische/ organisatorische Vorsorge bei Bauaktivitäten im Außenbereich</td>
</tr>
</tbody>
</table>

Tabelle 20: Maßnahmenvorschläge im Handlungsfeld Industrie, Gewerbe, Finanzwirtschaft – Übersicht.
4.2.7 Verkehr, Verkehrsinfrastruktur

4.2.7.1 Vulnerabilität des Verkehrssektors

Klimabedingte Beeinträchtigung des Verkehrssektors: Verkehrsunfälle

Die jährliche Gesamtzahl der Straßenverkehrsunfälle in Berlin lag 2013 bei 95.800, der von der Polizei geschätzte Sachschaden bei 184 Mio. €, neben 14.400 Leicht- waren 1.900 Schwerverletzte und 37 Todesopfer zu beklagen. Auf der Basis eines Datensatzes der Berliner Polizei war es erstmals möglich, den Wettereinfluss auf das Unfallgeschehen in Berlin zu ermitteln (siehe Box 9). Die wichtigsten Resultate sind, dass:

- die Gesamtunfallzahlen (und damit die unterschiedlichen Schadensdimensionen) signifikant mit der Tagesschichttemperatur ansteigen (z.B. +3,6%/°C für die Anzahl der Schwerverletzten),
- dieser Anstieg zu 90% auf die Temperaturabhängigkeit der Zweiraddichte zurückzuführen ist,
- die Häufigkeit von Unfällen mit ausschließlicher LKW/ PKW-Beteiligung an Regentagen signifikant über der an trockenen Tagen liegt.

Kein Einfluss auf das Berliner Unfallgeschehen ist für die Niederschlagsintensität nachzuweisen, ebenso spielen Frost- und Hitzetage keine signifikante Rolle. Eine der Folgerungen aus dieser Analyse ist, dass der Sicherheit des Fahrradverkehrs in Zukunft aus Gründen der Klimaanpassung eine weitgehend höhere Aufmerksamkeit zu widmen ist als dies derzeit der Fall ist.

Box 8: Wetter- und Klimaabhängigkeit der Straßenverkehrsunfälle in Berlin

Diese Auswertung zeigt im Detail, dass (1.) für jedes Grad Celsius (°C) Temperaturanstieg eine Erhöhung der Zahl der Leichtverletzten (Schwerverletzten) bei Straßenverkehrsunfällen um 2,7% (3,6%) eintritt. Der hohe Anteil an nicht erklärter Varianz rührt von innerdiurnalen (Tag-zu-Tag)-Veränderungen der Dichte von unterschiedlichen Verkehrsteilnehmer/-innen her – die Berücksichtigung weiterer Wettervariablen in unterschiedlichen Kombinationen verringert diesen nur unwesentlich. (2.) Ausgehend von dieser statistischen Analyse der Temperaturabhängigkeit und der Temperaturprojektion aus Kap. 3 hat Berlin – ceteris paribus – Mitte des Jahrhunderts klimabedingt mit zusätzlichen 740 Leicht- und 130 Schwerverletzten pro Jahr zu rechnen.
Die Analyse der Berliner Unfalldaten zeigt weiterhin auf, dass alle Charakteristika von Unfällen mit Fahrradbeteiligung signifikant von der Temperatur abhängen, während die Charakteristika von Unfällen nur zwischen PKW/ LKW temperaturinsensitiv sind. Es gibt für Berlin keinen statistischen Hinweis, dass erhöhte Temperaturen etwa über den Konzentrationsverlust der Verkehrsteilnehmer zu mehr Unfällen führen, da dies auch bei Unfällen nur mit PKW/ LKW-Beteiligung feststellbar sein müsste – dies ist aber nicht der Fall.106 Darüber hinaus zeigt sich, dass die Temperaturabhängigkeit des Berliner Unfallgeschehens zu 70% (bzw. 25%) durch Unfälle mit Fahrrad (bzw. Moped/ Motorrad)-Beteiligung bedingt wird. Die Auswertung der Saisonalität der Radverkehrsdichte in Berlin (Abbildung 78) zeigt nun, dass dieser Effekt den temperaturbedingten Anstieg der Unfälle mit Fahrradbeteiligung vollständig erklärt.

Die quantitative Analyse der Unfalldaten ergibt weiterhin, dass das Berliner Unfallgeschehen gegenüber Niederschlägen in nicht-linearer Weise sensiv kehurdichte nicht berücksichtigt. Dies gilt auch für die Aussage, nach der der Anteil konzentrationsrelevanter Unfälle (z.B. Abbiegeunfälle) an kühlen Tagen (Temperaturen von unter 15 °C) bei 47% liegt und an sehr warmen Tagen auf 63% ansteigt (vgl. ADAC 2015).

4.2.7 Verkehr, Verkehrsinfrastruktur

ist: Trockene Tage unterscheiden sich signifikant von solchen mit regennasser Straße (Zunahme der Unfälle zwischen PKW/ LKW um ca. 20%)\(^{107}\), starke Niederschläge führen dagegen nicht zu einem signifikanten weiteren Anstieg der Unfallzahlen. Die verminderte Haftung der Reifen auf der Straßenoberfläche ist also der entscheidende Faktor, der das Unfallgeschehen nach oben treibt, nicht die größere oder kleinere Menge des Niederschlags. Die Klimaprojektionen in Kap. 3 zeigen übereinstimmend, dass die Anzahl der trockenen Tage sich zukünftig nicht ändern wird, hier also kein klimabedingter Effekt zu erwarten ist.

Klimabedingte Beeinträchtigung des Verkehrssektors: Verkehrsgeschehen

Klimabedingte Störungen des Verkehrsflosses spielen jenseits des im vorherigen Abschnitt diskutierten Unfallgeschehens eine bedeutende Rolle: Die Berliner/-innen verbringen durchschnittlich 70,1 Minuten pro Kopf und Tag im Verkehr, 88,4% nehmen regelmäßig am Verkehrsgeschehen teil. Hierbei spielen alle Verkehrsträger eine wichtige Rolle: 31% aller Wege in Berlin (Binnenverkehr, Quell- und Zielverkehr) werden zu Fuß zurückgelegt, 12,5% mit dem Fahrrad, 29,6% im motorisierten Individualverkehr (MIV) und 26,9% im öffentlichen Personenverkehr (ÖPV) (AHRENS 2014: Tab. 5.3). Große Sensitivität des Straßenverkehrsbetriebs besteht gegenüber Eisbildung und Schneefall. Dies betrifft in unterschiedlichem Maße alle Verkehrsträger. Verkehrsbewegungen durch Glatteis auf den Straßen betreffen den motorisierten Individualverkehr genauso wie den Lkw-Verkehr oder den straßengebundenen ÖPNV, kann aber auch zu Behinderungen beim Flugverkehr, bei der Bahn oder im Schiffsverkehr führen. Fußgänger/-innen und Radfahrer/-innen sind ebenfalls betroffen.

In Zukunft nehmen diese Wetterphänomene sowohl in ihrer Häufigkeit als auch in ihrer Intensität ab. Die Winter werden milder, so dass die zunehmenden Niederschläge im Wesentlichen nicht als Schneefall, sondern als Regen auftreten werden. Bis zur Mitte des Jahrhunderts ist mit einem Rückgang der Schneefälle um ca. 40%, bis Ende des Jahrhunderts um ca. 70% zu rechnen. Auch die Anzahl der Eisstage wird in ähnlichen Maße abnehmen (→ Kap. 3) und damit dürften durch Glatteis bedingte Verkehrsstörungen sehr wahrscheinlich seltener werden (siehe dazu auch UBA 2015: 184 f.). Dennoch werden extrem Schneefälle und (Blitz-)Eisbildung in Zukunft (auch über das 21. Jahrhundert hinaus) immer wieder einmal vorkommen. Das bedeutet, dass die bestehenden Kapazitäten (z.B. für die Schneeräumung der Straßen oder die Enteisung) weiter vorgehalten werden müssen, was Kosten verursacht. Erfahrungsgemäß ist dies schwieriger zu rechtfertigen, wenn die extremen Ereignisse nur noch sporadisch auftreten, also die letzte Nutzung möglicherweise einige Jahre zurückliegt. Gewisse Kostenentlastungen (z.B. geringere Streugutvorhaltung, reduzierter Personalbedarf im Winter) sind aber zu erwarten.

\(^{107}\) Zu den Auswirkungen von Regen auf das Verkehrsgeschehen siehe auch HAMILTY/ ANDREY/ MILLS et al. (2013).

Die zukünftig zu erwartende Zunahme von Starkregereignissen wird auch die Spitzenabflüsse aus dem Straßenraum erhöhen und dürfte damit – falls es zu keinen weiteren Anpassungsmaßnahmen im Bereich der Stadtentwässerung kommt (→ Kap. 4.2.2) – das Verkehrsgeschehen in Berlin immer wieder beeinträchtigen. Wie die Vergangenheit zeigt, führt z.B. die Überlastung und Verstopfung der Gullys dazu, dass sich rasch kleine „Seen“ bilden, die vor allem für den straßengebundenen Verkehr erhebliche Barrieren darstellen (vgl. Abbildung 80).

Angesichts des höheren Versiegelungsgrades des innerstädtischen Bereichs und der höheren Dichte an verkehrstechnischen Bauwerken (z.B. zur Querung von Straßen- oder Schienenverkehr) kann ganz allgemein von einer höheren Vulnerabilität des innerstädtischen Verkehrsgeschehens für das stadtweite Risiko vermehrter Starkregereignisse ausgegangen werden.

Klimabedingte Beeinträchtigung der Verkehrswege

Berlin hat ein S-Bahn-Netz von ca. 330 km Streckenlänge, die U-Bahn hat ca. 150 km an Streckennetz aufzuweisen, die Straßenbahn 300 km. Es gibt allein 77 km an Bundesautobahnen im Berliner Stadtgebiet und 186 km an Bundeswasserstraßen. Zählt man das übrige Straßennetz sowie die Bahn- und Betriebshöfe hinzu, dann wird deutlich, wie groß, bedeutsam und verflochten mit der Stadt die Berliner Verkehrsinfrastrukturen sind.

Verschiedene Teile der Bahinfrastruktur (Bahn, S-Bahn, U-Bahn im oberirdischen Betrieb) sind für wetter-/witterungsbedingte Einflüsse, speziell Extremereignisse, in unterschiedlichem Maße anfällig. Ein europäisches Forschungsvorhaben, an dem u.a. die Deutsche Bahn AG als Praxispartner beteiligt war (NOLTE/KAMBUROW/RUPP 2011), hat eine Rangfolge an gefährlichen Klimawirkungen identifiziert; parallel wurde eine Rangfolge des vulnerablen Inventars im Bereich Bahinfrastruktur gebildet, deren erste zehn Ränge nachfolgend wiedergegeben werden (Abbildung 81).

110 Der ADAC etwa warnte bereits vor entsprechenden Straßenschäden in Neubaugebieten von Marzahn und Hellersdorf (KOCH-KLAUKE 2014).
4.2.7 Verkehr, Verkehrsinfrastruktur

auch schnelle Instandsetzung und wissenschaftliche Begleitung vorsieht.111 Für die Bundesautobahnen auf dem Stadtgebiet übernimmt Berlin in Auftragsverwaltung des Bundes die regelmäßigen Kontrollen, ordnet gegebenenfalls Geschwindigkeitsreduktionen oder Sperrungen an und führt Reparaturen durch. Hier wird seitens der Verwaltung kein zusätzlicher Handlungsbedarf über die aktuellen Maßnahmen hinaus gesehen (Interview Herr Vierarm, SenStadtUm, Abteilung X-Tiefbau/Projektbereich Straße-Bauausführung, → Teil II, Kap. 14).

\textit{Frost und Eis} spielen eine große Rolle für Funktionsbeeinträchtigungen von Straßen und Bürgersteigen (Auffrieren), Schienenwegen (Vereisen von Weichen) und Oberleitungen (Vereisen). Durch Stürme verursachter Baumfall kann neben der direkten Verkehrsbehinderung auch zu Schäden an der Verkehrsinfrastruktur führen. Hier ist allerdings kein klimawandelbedingter Anstieg der Häufigkeiten dieser Ereignisse zu erwarten, teilweise sogar ein Rückgang (→ Kap. 3). Allerdings ist zu beachten, dass diese Ereignisse auch zukünftig vorkommen werden und insofern Vorsorge zum Erhalt bzw. zur Verbesserung der Qualität der Verkehrsinfrastruktur zu treffen ist.

Klimabedingte Verschärfung der verkehrsbedingten Umweltbelastung: Klimawandel als „Smog-Verstärker“

Der Klimawandel kann nicht nur das Verkehrsgeschehen und die Verkehrsinfrastrukturen gefährden, er kann auch negative Umwelteffekte des Verkehrsgeschehens verstärken. Der Richtwert für die maximale Ozonkonzentration von 120 µg/l im 8-Stunden-Mittel wird in Berlin in letzter Zeit an etwa 10-20 Tagen pro Jahr überschritten; es kommt zu „Sommersmog“.113 Im letzten Jahr sind in vielen Städten – so auch in Berlin – weiter angestiegene Ozonwerte zu beobachten (vgl. Box 10).

112 Auf der projekteigenen Internetseite (www.adsvis.de) sind weitere Informationen erhältlich.

113 Als „Sommersmog“ bezeichnet man u.a. eine hohe Ozon-Konzentration in der bodennahen Luft, die durch photochemische Umsetzung von Vorläufersubstanzen wie NO\textsubscript{2}, CO und flüchtigen organischen Verbindungen (VOC) entsteht. Ozon reizt die Schleimhäute und Augen, je nach Konzentration führt es zu verstärktem Hustenreiz, vermindert der sportliche Leistung, einer Vermindeung der Lungenfunktionen bis hin zu chronischen Lungenerkrankungen.
4.2.7 Verkehr, Verkehrsinfrastruktur

Box 9: Sommersmog in Berlin unter Klimawandel

Um zu einer quantitativen Abschätzung der zu erwartenden Zunahme der Ozonbelastung im Berliner Innenstadtbereich zu kommen, wurde auf die Daten des Berliner Luftgüte-Messnetzes (BLUME) (SENSTADTUM 2015) zurückgegriffen.

Abbildung 80: Berechnung der U120-Tage aus NO2-Konzentration und Hitzetagen.

Es zeigt sich im Rahmen einer multivariaten Regressionsanalyse, dass die Anzahl der Tage pro Jahr, an denen der Richtwert der Ozonkonzentration im Berliner Innenstadtbereich überschritten wird („U120“), gut aus der Anzahl der heißen Tage (Tagesmaximaltemperatur > 30 °C) und der mittleren innerstädtischen NO2-Hintergrundkonzentration im entsprechenden Jahr rekonstruiert werden kann (R² = 0,8 p < 0,001; für die einzelnen Koeffizienten p< 0,05). Dieses signifikante, einfache empirische Modell konnten wir nutzen, um den Einfluss des Klimawandels (Klimasignal „Zunahme heißer Tage“) auf die Anzahl der zukünftigen Ozon-Überschreitungstage abzuschätzen.

Abbildung 83 zeigt links oben den Verlauf der erklärenden Variablen NO2-Konzentration und rechts oben die Anzahl heißer Tage für die Jahre 2001 bis 2014. Das untere Diagramm zeigt die gemessenen Ozon-Überschreitungstage (durchgezogene rote Linie) sowie das Resultat des einfachen empirischen Modells (gestrichelte orange Linie). Das Modell vermag 80% der beobachteten Varianz zu erklären. Da die Variable „Heiße Tage“ nur näherungsweise die für die photochemischen Prozesse relevante Sonneneinstrahlung beschreibt, NO2 zwar das dominierte, aber nicht das einzige Vorprodukt für O3 ist und das Modell mit mittleren Werten für den gesamten Innenstadtbereich arbeitet, sind die vergleichsweise geringen Abweichungen zu erwarten.

Bis zur Mitte des Jahrhunderts ist etwas mehr als eine Verdopplung der Anzahl der jährlichen Hitzetage zu erwarten (+115%, → Kap. 3). Daraus ergibt sich – die Unsicherheiten des Regressionsmodells berücksichtigend – eine Zunahme der O3-Richtwertüberschreitungstage von bis zu 80%. Allein um die derzeitige Luftqualität unter Klimawandelbedingungen zu erhalten, muss eine deutliche Reduktion der NO2-Konzentration erreicht werden. Nach dem hier verwendeten empirischen Modell ist eine NO2-Reduktion um ca. ein Viertel bis 2050 notwendig, um den Status Quo zu halten, d.h. im Innenstadtbereich muss in etwa der Wert an NO2-Hintergrundkonzentration erreicht werden, der heute an Stadtrandlagen vorliegt. Die Fortschreibung des sich angedeutenden Reduktions-trends seit 2001 würde hierzu bei weitem nicht ausreichend sein.

114 Das empirische Modell kann hier nur eine erste Näherung liefern, da die notwendige NO2-Konzentration unterhalb des bisherigen Beobachtungsbereichs liegt – damit wird das Modell in dieser Variable extrapolierend verwendet.

115 Dieser Minderungstrend von ca. 0,5%/a ist wegen der relativ großen interanuellen Schwankungen (siehe Abbildung 83) nicht signifikant.

116 Siehe LfU 2015.
4.2.7 Verkehr, Verkehrsanlagen

Wählt man als Zielvorgabe den Erhalt der gegenwärtigen städtischen Ozonsituation, dann muss – den zukünftigen Klimawandel und seine „Smog-Verstärkerfunktion“ berücksichtigend – die Konzentration der im innerstädtischen Kontext wichtigsten Vorläufersubstanz NO₂ entsprechend verringert werden. Der Anteil des Straßenverkehrs an den NO₂-Emissionen liegt im Sommer bei über 80%. Im Wesentlichen wird also hier anzusetzen sein.

4.2.7.2 Maßnahmen zur Anpassung des Verkehrssektors

Mit Blick auf die besonderen Gefährdungslagen des Berliner Verkehrssektors angesichts des zukünftigen Klimawandels wurden zum einen fünf objektbezogene Maßnahmen als vordringlich identifiziert, zum anderen wurde eine strategisch-instrumentelle Maßnahme entwickelt, die auch längerfristig die Anpassungsfähigkeit dieses Sektors gewährleisten soll.

Eine erste Gruppe von objektbezogenen Maßnahmen adressiert die wichtigsten Vulnerabilitäten der Straßenverkehrswege gegenüber zukünftig häufiger auftretenden Wetterextremen (VVI-1, VVI-2).

Die im Berliner Luftreinhalteplan 2011-17 (SENSTADTUM 2013) getroffenen Annahmen über die möglichen filterinduzierten Reduktionen der Verkehrsemissionen haben sich nur teilweise erfüllt, da der berechnete Wert für innerstädtische NO₂-Hintergrundkonzentration für 2015 zu hoch liegt.

Tabelle 21 zeigt die Maßnahmenvorschläge des Verkehrssektors in der Übersicht; die ausführliche Beschreibung finden sich in den Maßnahmenblättern in Kap. 10.
Blickfeld rückt. Im Anpassungskontext sind die Radverkehr fördernden Maßnahmen besonders hervorzuheben, da hier eine positive Rückwirkung des Klimawandels auf die Verkehrsmittelwahl zu konstatieren ist. Auf der anderen Seite ist die Attraktivität des ÖPNV und des Fußgängerverkehrs auch unter Klimawandelbedingungen zu gewährleisten. Mit dem Vorschlag einer instrumentellen Maßnahme (VVI-6) wird schließlich der Tatsache Rechnung getragen, dass Anpassungsmaßnahmen aus unterschiedlichen Gründen in Zukunft möglicherweise ergänzt, weiterentwickelt und verfeinert werden müssen. Es können in den nächsten Jahren neue relevante Vulnerabilitäten zu Tage treten, die heute nicht absehbar sind. Ebenfalls könnten sich durch neue Technologien Optionen der Klimaanpassung eröffnen, die derzeit noch unbekannt sind.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Objektbezogene Maßnahmen: Ertüchtigung der Verkehrswege</td>
</tr>
<tr>
<td>VVI-1</td>
<td>Aufbringung von angepasstem Straßenbelag</td>
</tr>
<tr>
<td>VVI-2</td>
<td>Anpassung der Straßenentwässerung an das zukünftige Starkniederschlagsaufkommen</td>
</tr>
<tr>
<td></td>
<td>Objektbezogene Maßnahmen: Reduktion von verkehrsbedingten NOx-Emissionen und Sicherung des umweltfreundlichen Verkehrsträgermixes vor den Auswirkungen des Klimawandels</td>
</tr>
<tr>
<td>VVI-3</td>
<td>Teilmaßnahmen Radverkehr</td>
</tr>
<tr>
<td>VVI-4</td>
<td>Regelung zur Kühlung im ÖPNV</td>
</tr>
<tr>
<td>VVI-5</td>
<td>Sicherheit und Annehmlichkeit des Fußverkehrs aufrechterhalten</td>
</tr>
<tr>
<td></td>
<td>Instrumentelle Maßnahmen</td>
</tr>
<tr>
<td>VVI-6</td>
<td>Task Force Verkehrsinfrastruktur-Check einführen</td>
</tr>
</tbody>
</table>

119 Im Berliner Luftreinhalteplan (SENSTADTUm 2013) werden Klimawandelaspekte zwar im Hinblick auf Feinstaubbelastung und ein sich möglicherweise änderndes Niederschlagsregime angesprochen, nicht aber im Zusammenhang mit der Ozonbildung. Darüber hinaus spielen sie bei der Rechtfertigung der Maßnahmen keine Rolle.
4.2.8 Tourismus, Kultur, Sport

Betrachtet man zunächst den Hintergrund und die Bedeutung des Handlungsfeldes Tourismus, Kultur und Sport (TKS), so stellt man fest: Allen Unterschieden zum Trotz sind die drei Teilbereiche Tourismus, Kultur und Sport jeweils durch einen bedeutenden Anteil an Aktivitäten im Freien gekennzeichnet, wodurch sie den Klimawandel folgen in ähnlicher Weise ausgesetzt sind.\(^{120}\)

\(^{120}\) Das Klimawirkungsmodell des Sektors „Tourismus, Kultur, Sport“ (TKS) findet sich im Teil II, AFOK-Endbericht (Kap. 11).

4.2.8.1 Vulnerabilitäten

Im Handlungsfeld Tourismus, Kultur und Sport führt die hohe „Freiluftkomponente“ dazu, dass Klimasignale recht unvermittelt einwirken. Es werden Veränderungen und auch Gefahren auf diese Branchen zukommen, aber es sind auch gewisse Chancen sichtbar. Die Verflechtungen von möglicherweise positiven und negativen Auswirkungen auf das Handlungsfeld sind im Klimawirkungsmodell nachzuvollziehen und werden im Folgenden näher erläutert.

Kurz- und mittelfristig: Chancen durch Saisonverlängerung

![Abbildung 82: Saisonale Schwankungen im Berlin-Tourismus aus In- und Ausland. Quelle: IHK Berlin 2015: 1.](image_url)

Steigende Sommertemperaturen und vor allem die Zunahme heißer Tage bedeuten aber auch mehr Hitze-stress für Besucher/-innen und beim Sport. Der thermische Komfort der aufgeheizten Stadt sinkt, der

Ein gesamtstädtisches Tourismuskonzept sollte die Anpassungsmaßnahmen Berlins insbesondere bezüglich einer Verschiebung der Saison und zunehmenden Hitzenwellen herausstellen sowie die Vorteile der Stadt im Hinblick auf den Klimawandel betonen und positiv für sich nutzen (TKS-3).

Risiken durch Extremereignisse

Aufgrund der hohen „Freiluft-Komponente“ ist das Handlungsfeld Tourismus, Kultur, Sport von Extremereignissen direkt betroffen, womit einige Risiken verbunden sind (vgl. auch Box 11, unten).

Eine zunehmende Anzahl an Hitzetagen kann im Kulturbetrieb, bei Tourismusangeboten und bei sportlichen Aktivitäten innerhalb von Gebäuden zu zusätzlicher Nachfrage nach Klimatisierung führen. Musik-, Theater-, Tanzeinrichtungen etc. legen aber zumeist während der warmen Sommerzeit ohnehin eine Spieldauer ein oder verlagern Teile ihrer Aktivitäten nach draußen.

Andauernde Trockenheit belastet die Vegetation in Parks, auf Grünflächen und Sportplätzen und führt folglich zu einem erhöhten Pflegeaufwand. Sportplätze mit Naturrasen verbrauchen daher im Sommer viel...
Wasser. Sie dürfen aber zumeist ohnehin nur 10-20 Stunden pro Woche bespielt werden, um den Nutzungsdruck gering zu halten (Interview Hahn; → Kap. 14). Beim Sport auf Kunstrasenflächen, die aufgrund geringerer Pflegekosten stärker eingesetzt werden dürften, kann es gerade an sehr heißen Tagen zu Verletzungen und Verbrennungen kommen.

Da gerade Tourist/-innen bei Extremwettersituationen aufgrund mangelnder Orts- und/ oder Sprachkenntnisse sich vergleichsweise weniger gut informieren bzw. schützen können, wird die Maßnahme TKS-4 beschrieben. Bei den AFOK-Workshops wurde betont, dass bei der Berücksichtigung der Tourist/-innen als vulnerable Gruppe im Katastrophenschutz in Berlin noch ein Defizit besteht. Erste Schritte in diese Richtung laufen aber aktuell bei den Berliner Verkehrsbetrieben an (KURPJUWEIT 2015); sie sollten verstärkt werden.

Abbildung 84: Basketballplatz und Weitsprunganlage in Schöneberg nach starkem Regen, 14.7.2015, Foto: PANKOKE.

Vereinzelt kann es auch notwendig werden, Veranstaltungen unter freiem Himmel kurzfristig abzusagen bzw. zu verschieben, mit den daraus resultierenden negativen Folgen für Veranstalter/-innen, Sportler/-innen, Zuschauer/-innen und Sponsor/-innen.

Der Sektor Tourismus, Kultur, Sport spielt auch insofern eine wichtige Rolle für die Abschätzung des Vulnerabilitätspotenzials für Berlin, als seine Themen aufgrund der Unterhaltungs-/ Informationspräferenzen der Bevölkerung sowie der dazu analogen Spartenstruktur und Berichtskultur der Medien eine besondere Aufmerksamkeit erzielen. Ein großer Teil der Medienprominenz stammt zudem aus dem Kultur- und Sportbereich. Im Tourismusbereich geht es zudem um das Image Berlins, das viele Bürger/-innen durchaus interessiert. Ein kursorischer Blick in die Medienlandschaft der jüngsten Vergangenheit zeigt, dass Wetter-, ggf. auch Klimaphänomene in diesem Sektor besondere Aufmerksamkeit auf sich ziehen (→ Box 11)
Wetterextreme ziehen gerade im Handlungsfeld TKS die massenmediale Aufmerksamkeit auf sich. Möglicherweise kann dieser Sektor daher auch zu einer verstärkten Sensibilisierung der Bevölkerung für die Folgen des Klimawandels besonders beitragen (→ Kap. 8).

Box 10: Ausgewählte Schlagzeilen in den Medien zu Auswirkungen des Klimawandels auf die Bereiche Tourismus, Kultur und Sport in Berlin

„Badeunfälle – Mehr Badeunfälle und Badetote wegen heißen Sommerwetters“; *Berliner Morgenpost* (13.08.2015)

„Hitzewelle in Berlin – Sommerprodukte sind ausverkauft“; *Der Tagespiegel* (12.08.2015)

„Super Sommer-Hitze – Dieses Wochenende macht Seen-süchtig“; *Bild* (08.08.2015)

„Bis zu 40 Grad! Grillverbot wegen extremer Hitze“; *Die Welt* (06.08.2015)

„50 Grad unter der Kuppel – Reichstagskuppel erneut wegen Hitze geschlossen“; *Der Tagespiegel* (05.07.2015)

„Hitze bei Helene – Spezielle Wasser-Regeln bei Helene Fischers Berlin-Konzerten“; *Berliner Morgenpost* (03.07.2015)

„Politiker fordern Hitze-Siesta“; *Bild* (26.07.2015)

„Berliner Behörden wegen Hitze besorgt um Kutschpferde“; *Märkische Oderzeitung* (05.07.2015)

„Sturm stürzte Gerüst in Menschenmenge – Schwerverletzte bei Kultur-Karneval“; *RP Online* (09.06.2003)

„Fußballplatz ist fast ständig gesperrt – Bei Regen stehen die Spieler im Schlamm“; *Berliner Zeitung* (07.03.2000)

4.2.8.2 Maßnahmen

Zusammenfassend kann festgehalten werden, dass die Teilbereiche Tourismus, Kultur und Sport besonders wegen ihrer „Freiluftkomponente“ anfällig für den Klimawandel sind, sich aber auch vereinzelt Chancen auf, die es künftig zu nutzen gilt. Die vorgeschlagenen Maßnahmen greifen die identifizierten Verwundbarkeitsaspekte auf und versuchen gleichzeitig, gewisse Potenziale, die mit dem Klimawandel kurz- bis mittelfristig für Berlin besonders im Bereich Tourismus verbunden sein können, zu heben.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKS-1</td>
<td>Anpassung von Angeboten im Kultur- und Sportbereich</td>
</tr>
<tr>
<td>TKS-2</td>
<td>Festsetzung einer verbindlichen Regelung zur kostenlosen Ausgabe von Trinkwasser und für die Einrichtung von Erfrischungsanlagen bei (Groß-) Veranstaltungen</td>
</tr>
<tr>
<td>TKS-3</td>
<td>Marketingkonzept: Klimaangepasster Städetourismus in Berlin</td>
</tr>
<tr>
<td>TKS-4</td>
<td>Berücksichtigung der Tourist/-innen als vulnerable Gruppe im Katastrophenschutz</td>
</tr>
<tr>
<td>TKS-5</td>
<td>Empfehlung zur Einrichtung bzw. Nachrüstung von Drainagesystemen zur Oberflächenentwässerung bei Außensportanlagen</td>
</tr>
</tbody>
</table>

4.2.9 Bildung

- Erstens gehören Bildungseinrichtungen – die Gebäude und Infrastrukturen, vor allem aber die dort tägigen Menschen – mit zum vulnerabelsten Inventar der Stadt.

- Zweitens kann dieses Handlungsfeld wie kein anderer aber auch zur Vermittlung von Wissen und Fähigkeiten einer verbesserten Problemwahrnehmung und Anpassungskapazität in der Zukunft beitragen.

4.2.9.1 Vulnerabilitäten

Klimasignal Hitze: Erhöhte Vulnerabilität von Kindern

Folgen extremer Hitzeereignisse auf die menschliche Gesundheit wurden in Kap. 4.2.1 für die Bevölkerung allgemein aufgezeigt. Kleinkinder und Schüler/-innen sind besonders vulnerabel mit Blick auf Wärmelastungen (vgl. BASU 2015, BASU/SAMET 2002, KOVATS/HAJAT/WILKINSON 2004) und auch anfälliger gegenüber Luftschadstoffen und bodennahem Ozon (BUNGE/KATZSCHNER 2009), die an sonnenscheinreichen Hitzeetagen vermehrt auftreten (→ Kap. 4.1, 4.2, 4.5).

122 Das Klimawirkungsmodell des Sektors „Bildung“ (BIL) findet sich im AFOK Endbericht Teil II, 11.
Box 11: Erhöhte Vulnerabilität von Kindern

<table>
<thead>
<tr>
<th>Wasserverlust in % des Körpersgewichts</th>
<th>Symptome</th>
<th>Wasserverlust (in Litern)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kind 10 Jahre (30 kg)</td>
</tr>
<tr>
<td>1%</td>
<td>- Leichter Durst</td>
<td>0,3</td>
</tr>
<tr>
<td>2%</td>
<td>- Verminderung der Ausdauerleistung</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>- Neigung zu Muskelkrämpfen</td>
<td></td>
</tr>
<tr>
<td>3-5%</td>
<td>- Trockene Haut und Schleimhäut</td>
<td>0,9-1,5</td>
</tr>
<tr>
<td></td>
<td>- Vermindert Speichel („Trockener Mund“)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vermindert der Harnabfluss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Verminderung der Kraftleistung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hautrötungen</td>
<td></td>
</tr>
<tr>
<td>5-10%</td>
<td>- Erhöhter Puls</td>
<td>1,5-3,0</td>
</tr>
<tr>
<td></td>
<td>- Schwindelgefühl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kopfschmerzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vermindertes Blutvolumen</td>
<td></td>
</tr>
<tr>
<td>10-ca. 15%</td>
<td>- Verwirrtheit</td>
<td>3,0-4,5</td>
</tr>
<tr>
<td></td>
<td>- Geschwollene Zunge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rundzügige, empfindliche Haut</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Krämpfe</td>
<td></td>
</tr>
<tr>
<td>Ab ca. 15%</td>
<td>- Tod</td>
<td>> 4,5</td>
</tr>
</tbody>
</table>

Abbildung 89: Lage der Berliner Schulen (rote Punkte) im Stadtgebiet (oben links) und Einwohnerdichte Berlins (Einw.-dichte pro ha von gelb nach dunkelrot ansteigend) (oben rechts) sowie: Räumliche Verteilung der Bewertungsklassen zur thermischen Gesamtsituation in den Siedlungsräumen (Verknüpfung von Tag- und Nacht situation) Berlins, unten.

Quellen: SENBJW (oben links); SENSTADTUm (oben rechts); unten: Umweltatlas, Planungshinweis karte Stadt klima; http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/db411_04.htm. 123

Die Nebenfolge ist allerdings, dass damit Kitas und Schulen sich besonders dort räumlich konzentrieren, wo der städtische Wärmeinsel-Effekt besonders ausgeprägt ist – im Bereich der inneren Stadt und den höher

123 Vgl. SENBJW (Online: http://www.berlin.de/sen/bildung/schulverzeichnis_und_portraets/anwendung/SchulListe.aspx; Zugriff: 06.12.15) (links); SenStadtUm (Online: http://fbiner.stadt-berlin.de/fb/index.jsp?loginkey=showMap &mapId=k06_06ewdichte2011@senstadt; Zugriff: 07.12.15) (rechts).
verdichteten Siedlungskernen der äußeren Stadt. Damit hält sich gerade eine sehr vulnerable Bevölkerungsgruppe vermehrt dort im Stadtgebiet auf, wo die thermische Belastung durch Hitzeereignisse besonders hoch ist.124

Erhöhte Vulnerabilität in Gebäuden

Neben der Lage der meisten Berliner Bildungseinrichtungen in thermischen Belastungsgebieten der Stadt ist es vor allem deren baulichen Zustand, der Anlass zur Besorgnis gibt. Je schlechter die thermische Isolierung, desto höher nicht nur der winterliche Wärmeverlust, desto höher auch die sommerlichen Wärmelasten im Gebäude. Die Senatsverwaltung für Bildung, Jugend und Wissenschaft hat den aus den Bezirken gemeldeten Sanierungsbedarf der Berliner Schulen mit insgesamt rd. 1,9 Mrd. € beziffert, davon allein 409,6 Mio. € in Steglitz-Zehlendorf (ABGEORDNETENHAUS VON BERLIN 2014: Anlage 1).125

Die Zunahme der Durchschnitts-, vor allem aber der Spitzentemperaturen im Sommer wird dazu führen, dass sich die *Innenraumtemperaturen* der Berliner Kitas und Schulen (und anderer Bildungsgebäude) erhöhen werden und dadurch das Risiko von 126Hitzestress vor allem bei Kindern und Jugendlichen steigt. Dieses Problem trifft solche Einrichtungen, die über keinen bzw. keinen hinreichenden sommerlichen Wärmeschutz verfügen.

Neben der direkten thermischen Wirkung haben Hitzeereignisse aber auch noch einen negativen Effekt auf die *Innenraumluftqualität* (CO\textsubscript{2}-Konzentration, Feuchtigkeit). Hohe CO\textsubscript{2}-Konzentrationen treten vornehmlich bei mangelnder Lüftung auf, was wiederum häufig dem Bestreben geschuldet ist, die aufgeheizte Außenluft (Wärmelasten) nicht in das Klassenzimmer zu lassen. Durch den Mangel an Sauerstoff leidet die Konzentrationsfähigkeit.

Zu ähnlichen Ergebnissen mit Blick auf die CO\textsubscript{2}-Konzentration in Berliner Klassenzimmern kam das Schwerpunktprogramm „Gesundheitlich bedenkliche Substanzen in öffentlichen Einrichtungen Berlins“, das im Winterhalbjahr 2002/2003 40 typische Klassenräume in Grundschulen des Berliner Stadtgebietes und fünf Turnhallen untersuchte.126

\begin{footnotesize}
\footnotesize

125 Der energetische Gebäudesanierungsbedarf der Schulen ist dabei nur eine Kostenkomponente neben vielen weiteren Belangen, z.B. des Brandschutzes oder der Hygiene der sanitären Anlagen. Im Zeichen höherer Temperaturen wird übrigens auch die hygienische Qualität der Sanitäranlagen vor größere Herausforderungen gestellt. Die Sanierung der Sanitäranlagen kann daher als Teil der Klimaanpassung von Schulen betrachtet werden.

126 Im Rahmen dieses Programms wurde auch der Feinstaubgehalt der Innenraumluft in Klassenzimmern und Turnhallen von 40 Schulen gemessen und teilweise die dreifache Menge an PM\textsubscript{10} verglichen mit der Straße, festgestellt, an der die Schule lag. Der Aspekt „Feinstaub“ wird an dieser Stelle jedoch nicht weiter vertieft, weil (1) der ursächliche Zusammenhang zwischen Klimawandel und vermehrter Feinstaubbelastung zwar immer häufiger thematisiert, aber derzeit aus wissenschaftlicher Sicht noch unsicher ist und es weiterer Forschung bedarf. Außerdem hat sich (2) seit den Messungen aus den Jahren 2002/03 die Feinstaubbelastung in Berlin deutlich reduziert (vgl. SENSTADT UM 2013).
\end{footnotesize}
Die gemessenen CO₂-Werte der meisten untersuchten Schulen waren deutlich zu hoch – nicht nur mit Blick auf Maximalwerte (bis zu 11.000 ppm), sondern auch mit Blick auf den Mittelwert von 1.600 ppm, der über allen damals gültigen Richtwerten lag (vgl. ILAT/ LAGS o.J.).

Im Ergebnis sinkt nicht nur die schulische Leistung, es kommt auch zu körperlichem Unwohlsein bis hin zu Hitzestress. Gleichzeitig ist es kaum möglich, die Kinder in den schulischen Außenbereich zu bringen (z.B. in den Pausen, ggf. auch zu bestimmten Unterrichtseinheiten), da dort an heißen Tagen die hohen Temperaturen die Aufenthaltsqualität massiv beeinträchtigen.

Vulnerabilitätslage auf dem Schulhof/ Außengelände der Einrichtung

Von den Stakeholdern wurde im Rahmen der AFOK-Workshops in diesem Zusammenhang eine weitere Thematik als relativ wichtig erachtet: Die hitzbedingte Einschränkung der Nutzung vieler Außenräumen (Schulgärten, Schulfreizeiten, Spielplätze, Freigelände etc.).

Versiegelte Flächen, wenig oder kein Grün, das Fehlen von Verschattung – das Mikroklima mancher Schul- oder Pausenhöfe ist in vielen Fällen nicht nur klimatisch, sondern auch hinsichtlich des „Wohlfühl-Faktors“ für die Schulgemeinschaft nicht optimal.

In Berlin wurden in den letzten Jahren viele Schulhöfe saniert, wobei die Stadtumbauprogramme dabei eine große Rolle spielten. Auch die Initiative „Grün macht Schule“ hat seit 1983 bereits ca. 400 Berliner Schulen beraten oder betreut.

Seit 2009 ist in Berlin das „Hitzefrei“, also die Regelung, wonach ab einer bestimmten Temperatur landesweit an allen Schulen der Unterricht ausfällt, abgeschafft. Stattdessen soll die Unterrichtspflicht im Rahmen eines den Witterungsverhältnissen angepassten Unterrichts weiter gelten. Die Entscheidung obliegt nun der Schulleitung jeder einzelnen Schule, was zum einen eine erhöhte Sensibilisierung, zum anderen die notwendigen baulichen (Innen- und Außengelände) und organisatorischen Kapazitäten voraussetzt. Es kann festgehalten werden, dass eine bauliche Ertüchtigung der besonders vulnerablen Bildungseinrichtungen – allen voran Kitas und Schulen – für den Klimawandel erforderlich ist, um für verbesserten sommerlichen Wärmeschutz zu sorgen. Parallel dazu sollten auch die Außenanlagen „klimafit“ gemacht werden, wobei neben der Qualifizierung/ Ausweitung des vorhandenen Stadtgrüns der schulischen Außenanlagen (→ Kap. 4.1) auch die Übertragung der „Schwammstadt“-Prinzipien (→ Kap. 4.2) auf den Kita- und Schulbereich sowie – mit positivem umweltpädagogischen Zusatzeffekt – die gezielte Anlage von zusätzlichen Schulgärten wichtig ist.

(zur gleichwohl existierenden gegenwärtigen Problematik ausführlich → Kap. 4.2.1 und Kap. 4.2.7 sowie die jüngsten Messergebnisse des UBA online unter: https://www.umweltbundesamt.de/presse/presseinformationen/luftqualitaet-2015-stickstoffdioxid-belastung). Dessen ungeachtet gilt, dass Kinder eine erhöhte Vulnerabilität gegenüber Erwachsenen auch unterhalb der Grenzwerte aufweisen, und dass die Feinstaubbelastung im Innenbereich über der im Außenbereich liegen kann. Zukünftige Forschungsarbeiten haben die Frage zu beantworten, wie genau der Zusammenhang ist und inwiefern die Problematik mit zunehmendem Klimawandel eine erneute Verschärfung erfährt.

127 Das hier Gesagte gilt gleichermassen, wenn auch in angepasster Weise für Betreuungseinrichtungen von Kleinkindern.

128 Mehr Informationen sowie Beispiele für die Sanierung von Schulhöfen und Kindergärten finden sich online unter: http://www.stadtentwicklung.berlin.de/staedtebaufoerderprogramme/stadtumbau/

129 Mehr Informationen sowie Beispiele für die betreuten, aber auch weitere Projekte im Stadtgebiet finden sich auf der Internetseite der Initiative: http://www.gruen-macht-schule.de/. Siehe ebenfalls die Bundesarbeitsgemeinschaft (BAG) Schulpark (http://www.bag-schulpark.de/bundeslaender/berlin/koordinatoren/).
Box 12: Schulgärten und Phänologische Gärten – Schutz- und Lernorte der Klimaanpassung

Abbildung 91: Schulgärten: Standorte der Gartenarbeitsschulen im Stadtgebiet (links); Quelle: SENATSVERWALTUNG FÜR BILDUNG, WISSENSCHAFT UND FORSCHUNG BERLIN (2010): 30; (Kleine) Wasserflächen als effiziente und natürliche Kühlanlagen auf dem Schulgelände (rechts); Quelle: WIEBKE LASS.

Das SUZ Mitte trägt außerdem das Projekt „Berliner Gartenwetter“ mit, indem Berlins Gartenarbeitsschulen Wetterdaten erheben und veröffentlichen.

In Klima-Bildungsgärten (JAHNKE/ FOOS/ AENIS 2015) werden verschiedene Facetten des Klimawandels in unterschiedlicher Fächer- und didaktische Formate integriert.

Der Schau- und Demonstrationsgarten im Kinder- und Jugendclub „Maxim“ (Weißensee) ist zudem ein Beispiel dafür, dass sich auch außerschulische Bildungseinrichtungen sehr gut zur Vermittlung des Zusammenhangs „Klimawandel und Gärten“ eignen.

Über das für das Handlungsfeld Bildung im Zentrum stehende Klimasignal Hitze hinaus wurde in Kap. 3 gezeigt, dass es auch in Zukunft – trotz milderer Winter – zu Kälteeinbrüchen mit starkem Schneefall und Blitzeis kommen kann, die vor allem den Schulweg, die Außenflächen und die Abwasserleitungen betreffen (Berichte auf dem ersten AFOK-Stakeholder Workshop).

4.2.9.2 Maßnahmen

Der Bildungssektor ist aus zwei Gründen für die Anpassung an den Klimawandel besonders wichtig: Wie oben gezeigt wurde, ist das die Bildungsinfrastruktur verschiedener Hinsicht anfällig für die zu erwartenden Folgen des Klimawandels und muss vor ihnen besser geschützt werden. Das Bildungssystem ist gleichzeitig in der Lage, Qualifikationen und Gestaltungskompetenzen zu vermitteln, die für eine erhöhte Sensibilität gegenüber dem Klimawandel notwendig sind.

Es geht (2) um die organisatorische Anpassung von Abläufen in der Schule oder Einrichtung (BIL-3, BIL-4). Dadurch sollen Kinder und Jugendliche durch Sensibilisierungs- und verhaltensbezogene Maßnahmen besser

vor negativen Klimafolgen geschützt und die Bildungseinrichtung als „Motor und Partner“ der Anpassungsbemühungen ihrer räumlichen Umgebung (Nachbarschaft, Kiez) etabliert werden.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIL 1</td>
<td>Bildungseinrichtungen für den Klimawandel baulich ertüchtigen</td>
</tr>
<tr>
<td>BIL 2</td>
<td>Förderung von Schulgärten und anderer Lern- und Erfahrungsorte des Klimawandels</td>
</tr>
<tr>
<td>BIL 3</td>
<td>Anpassung der (Vor-) Schulorganisation</td>
</tr>
<tr>
<td>BIL 4</td>
<td>Schulen als Organisationskerne des Erfahrungsaustauschs zu Anpassungsmaßnahmen im Kiez</td>
</tr>
<tr>
<td>BIL 5</td>
<td>Einbindung der Klimaanpassung in bestehende Klimabildungsangebote</td>
</tr>
<tr>
<td>BIL 6</td>
<td>Einbindung der Klimaanpassung in Netzwerke und Verstetigungsprogramme zur Klimaneutralität (→ BEK, BNE)</td>
</tr>
<tr>
<td>BIL 7</td>
<td>Verankerung von Klimaanpassung im Unterricht</td>
</tr>
<tr>
<td>BIL 8</td>
<td>Einbindung der Volkshochschulen als Orte der Klima-Aufklärung</td>
</tr>
<tr>
<td>BIL 9</td>
<td>Förderung von Bildungsaktionen mit externen Partner/-innen</td>
</tr>
</tbody>
</table>

5 Synergien und Konflikte mit dem Klimaschutz

5.1 Zwei Säulen der Klimapolitik

Politiken zur Vermeidung des Klimawandels (engl. mitigation) und Politiken zur Anpassung an die Folgen des Klimawandels (engl. adaptation) bilden die beiden gleichberechtigten Säulen der Klimapolitik. Klimaschutz zielt darauf, die Emissionen von Treibhausgasen in die Atmosphäre zu begrenzen bzw. zu reduzieren, während Klimaanpassung darauf zielt, die physischen Auswirkungen des Klimawandels auf natürliche und soziale Systeme abzumildern und dadurch insgesamt die sozio-ökonomische Entwicklung durch Steigerung der Resilienz von den negativen physischen Folgen möglichst zu entkoppeln (vgl. Abbildung 92).

5.2 Synergien, Indifferenz oder Konflikt – Wechselwirkungen auf der Maßnahmenebene

Nachfolgend erfolgt eine solche Einzelprüfung mit Blick auf die vorgeschlagenen Einzelmaßnahmen aus Kapitel 4 (vgl. auch die Maßnahmenblätter in Anhang, Kap. 10). Es wurde für jede Maßnahme geprüft, ob es Synergien oder Konflikte mit dem Klimaschutz gibt. Maßnahmen, die indifferent sind, also weder eine Synergie noch einen Konflikt aufweisen, werden dabei in der nachfolgenden Übersicht (vgl. Tabelle 25) nicht weiter dargestellt. Nicht weiter diskutiert werden im Folgenden auch jene Maßnahmen, die eine positive/negative, aber nur sehr schwache Wechselwirkung aufweisen.

Einträge in Klammern markieren potenzielle oder konditionale Konflikte und Synergien, also solche, die nur unter bestimmten Umständen auftreten. In der letzten Spalte werden Erläuterungen zur Art der Wechselbeziehung sowie Hinweise zu einer möglichen Auflösung des Konflikts gegeben.132

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
<th>Art der Wechselwirkung</th>
<th>Erläuterung der Wechselbeziehung und ggf. Ansätze für mögliche Entschärfung des Konflikts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Synergie (+)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Konflikt (-)</td>
<td></td>
</tr>
</tbody>
</table>

Handlungsfeld: Menschliche Gesundheit und Bevölkerungsschutz (MGBS)

MGBS-2
Steigerung der körperlichen Fitness + Der Appell an die Steigerung der körperlichen Fitness dient nicht nur der Erhöhung der Abwehrkräfte gegenüber negativen Klimafolgen, sondern führt im Nebeneffekt auch zu einer verminderten Nutzung energieintensiver Gerätschaften und Vorrichtungen (z.B. Fahrstühle) und kann insbesondere die Verkehrsmittelwahl zugunsten des Umwelverbunds stärken.

MGBS-8
Anpassung/Verbesserung des Arbeits- schutzes + Viele der hier erforderlichen Einzelaufgaben (z.B. angepasste Kleidung, Trinkverhalten, Kühlung mit Wasser) erhöhen die Raumbehaglichkeit auch unterhalb der Schwelle aktiver (konventioneller) Kühlung und mindern damit den potenziell zusätzlichen Strombedarf im Sommer.

MGBS-9
Flexibilisierung von Arbeits- und Öff nungszeiten + Durch die zumindest teilweise Entzerrung der Arbeits- und Öffnungszeiten können Lastspitzen geglättet werden und auch die Verkehrsmengen verteilen sich besser über den Tag (Teilziel Verflüssigung des Verkehrs).

132 Im Rahmen der Erstellung des BEK wurde eine ähnliche Darstellung mit Blick auf die Maßnahmenvorschläge des Klimaschutzes vorgenommen (vgl. HIRSCHL/ REUSSWIG/ WEISS et al. 2013a: 155-159).
5.2 Synergien, Indifferenz oder Konflikt – Wechselwirkungen auf der Maßnahmenebene

<table>
<thead>
<tr>
<th>MGBS-10</th>
<th>Hitzeangepasste Speise- und Getränkeangebote in Kantinen und Gaststätten</th>
<th>+</th>
<th>In der Regel sind hitzeangepasste Speiseangebote „leichter“, enthalten also mehr pflanzliche Komponenten, und werden auch weniger häufig gekocht. Letzteres entlastet direkt die Energiebilanz, ersteres indirekt über die „graue“ Energie des Ernährungssektors.</th>
</tr>
</thead>
</table>

Handlungsfeld: Gebäude, Stadtentwicklung, Freiflächen (GSGF)

GSGF-1	Sicherung klimatischer Entlastungsräume mit stadtweiter Bedeutung	–	Stadtweit bedeutsame Entlastungsräume zu sichern bedeutet zunächst, dass diese Flächen einer weiteren Siedlungsentwicklung (Neubau, Nachverdichtung) nicht zur Verfügung stehen, also die städtische Dichte mindern, die aus Klimaschutzgründen tendenziell vorteilhaft ist. Die Maßnahmen GSGF-2, GSGF-3 zielen auf eine Entschärfung dieses Konflikts.
GSGF-3	Sicherung, Qualitätssicherung und Steigerung der Resilienz des bestehenden Stadtgrüns (Grün- und Freiflächen, Straßenbäume)		
GSGF-5	Klimatische Qualifizierung der Stadtoberfläche	+	Auch hier kann eine allgemeine Verbesserung der klimatischen Funktionen der Stadtoberfläche (Gebäudehüllen, Verkehrsflächen, Grün- und Freiflächen) die potenziell negativen stadtklimatischen Effekte von Verdichtungs- und Neubaumaßnahmen abmildern bzw. ausgleichen.
5.2 Synergien, Indifferenz oder Konflikt – Wechselwirkungen auf der Maßnahmenebene

GSGF-6	Entwicklung von integrierten Klimaanpassungskonzepten auf Quartiersebene / Klimamanager	(+)	Quartierslösungen spielen beim Klimaschutz eine zunehmend wichtige Rolle. Die Einbeziehung von Klimaanpassungsspekten (Hitzezuschutz, klimafreundliche Kühlung, alternative Regenwasserbewirtschaftung, Verhaltensanpassung) kann bestimmte technische Lösungen des Klimaschutzes erübrigen oder im Ausmaß abmildern.
GSGF-9	Ermöglichung der Zugänglichkeit kühlerer Räume in Hitzeperioden	+	Zugängliche Kühlräume überall in der Stadt mindern den Druck auf die Raumklimatisierung in Wohn- und Geschäftsräumen und entlasten damit (in wahrscheinlich geringem Umfang) die CO₂-Bilanz des Gebäudesektors.
GSGF-10	Begrenzung konventioneller Klimaanlagen in (Wohn-) Gebäuden	+	Durch die Begrenzung konventioneller Klimaanlagen kann der Zuwachs beim Stromverbrauch begrenzt werden. Ceteris paribus mindert dies auch die CO₂-Emissionen in einer erweiterten bilanziellen Betrachtung.

Handlungsfeld Wasserwirtschaft (WW)

Handlungsfeld Umwelt und Natur (UN)

| **UN-3** | Schutz, Pflege und Renaturierung der Berliner Moorstandorte | + | Intakte Moore sind THG-Speicher. Ihr Schutz in Berlin wirkt sich daher positiv auf das Klimaneutralitätsziel aus, auch wenn dies aufgrund der derzeitigen Systematik der Energie- und CO₂-Bilanz nicht ausgewiesen wird. |

Handlungsfeld Energie- und Abfallwirtschaft (ENA)

| **ENA-1** | Förderung energieeffizienter Kühlsysteme im Neubau und Bestand durch Modellvorhaben, zzgl. Information und Beratung von Immobilieneigentümern | + | Durch den Einsatz energieeffizienter Kühlsysteme wird – im Vergleich zum Referenzfall – der Stromverbrauch gedämpft und CO₂ eingespart. |
5.2 Synergien, Indifferenz oder Konflikt – Wechselwirkungen auf der Maßnahmenebene

<table>
<thead>
<tr>
<th>ENA-2</th>
<th>Institutionelle Vorsorge gegenüber potenziellen Störungen in der Stromversorgung</th>
<th>+</th>
<th>Eine Stabilisierung der Stromversorgung verhindert die private Vorsorge gegen solche Risiken (z.B. durch Dieselaggregate) jenseits sicherheitsrelevanter Bereiche (z.B. Krankenhäuser, Telekommunikationszentralen) und hat dadurch einen leicht positiven Nebeneffekt für den Klimaschutz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENA-9</td>
<td>Verstärkung der Bemühungen zur Abfallvermeidung</td>
<td>+</td>
<td>Der durch diese Maßnahme bewirkte Verzicht auf konventionelle Gebäudekühlung entlastet den Stromerzeugungssektor und verbessert die CO₂-Bilanz Berlins speziell im wichtigen Gebäudesektor.</td>
</tr>
</tbody>
</table>

Handlungsfeld Industrie, Gewerbe, Finanzwirtschaft (IGF)

| IGF-8 | Verbesserung des sommerlichen Wärmeschutzes bei gewerblichen (Neu-)Bauten, inkl. Beratung und Begleitung von Unternehmen | + | Der durch diese Maßnahme bewirkte Verzicht auf konventionelle Gebäudekühlung entlastet den Stromerzeugungssektor und verbessert die CO₂-Bilanz Berlins speziell im wichtigen Gebäudesektor. |

Handlungsfeld Verkehr und Verkehrsinfrastruktur (VVI)

<table>
<thead>
<tr>
<th>VVI-3</th>
<th>Teilmaßnahmen Radverkehr</th>
<th>+</th>
<th>Ein verbesserter Schutz des Radverkehrs gegenüber den direkten und indirekten (Unfallgeschehen) Folgen des Klimawandels versteht die Option für dieses umweltfreundliche Verkehrsmittel und verbessert so die CO₂-Bilanz des Verkehrssektors.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VVI-4</td>
<td>Regelung zur Kühlung im ÖPNV</td>
<td>+</td>
<td>Eine verstärkte Kühlung in den ÖPV-Verkehrsmitteln verursacht zunächst einen höheren Energiebedarf und kann – je nach gewähltem Kühlmittel – auch negative Folgen für die THG-Bilanz dieses Verkehrssegments haben. Auf der anderen Seite wird dadurch dessen Attraktivität auch in Zeiten des Klimawandels sichergestellt, was den Verkehrsträgermix langfristig klimafreundlich gestaltet.</td>
</tr>
</tbody>
</table>
5.2 Synergien, Indifferenz oder Konflikt – Wechselwirkungen auf der Maßnahmenebene

| VVI-5 | Sicherheit und Annahmlichkeit des Fußverkehrs aufrechterhalten | + | Ähnlich wie beim Radverkehr sorgt auch diese Maßnahme für eine Stabilisierung dieser umweltfreundlichen Verkehrsmitteloption. Außerdem trägt sie indirekt zur körperlichen Fitness bei (MGBS-2). |

Handlungsfeld Bildung (BIL)

| BIL-1 | Bildungseinrichtungen für den Klimawandel baulich ertüchtigen | + | Einzelne Elemente dieses Programms (z.B. Außenverschattung, Lüftungskonzepte) verbessern die klimatische Situation ohne zusätzlichen Kühlernergiebedarf und wirken so im Sinne des Klimaschutzes. |

In der Zusammenschau kann festgestellt werden, dass bei 25 der von AFOK vorgeschlagenen Maßnahmen Wechselwirkungen (Synergien oder Konflikte) mit dem Klimaschutz feststellbar sind. Die Synergien überwiegen mengenmäßig die Konflikte in hohem Maße. Allerdings sagt dies nichts über die Relevanz und Intensität eines Konflikts aus.

6 Ausgewählte Kosten- und Nutzenaspekte

6.1 Zur Methodik der Bewertung von Kosten und Nutzen

Die Herausforderung für Berlin liegt also darin, aus den zahlreichen möglichen Anpassungsmaßnahmen, mit denen die nachteiligen Folgen des Klimawandels für die Stadt wirksam vermieden oder gemildert werden können, diejenigen auszuwählen, die einerseits die größten positiven Effekte versprechen und die andererseits für die Stadt und ihre Einwohner auch bezahlbar sind. Bei dieser Auswahl können ökonomische Analysen und Bewertung wertvolle Hilfestellung liefern.
6.1 Zur Methodik der Bewertung von Kosten und Nutzen

Aus betriebswirtschaftlicher Perspektive müssen Investitionen rentabel sein, d.h., dass die Einnahmen aus einem Projekt die Investitions- und laufenden Kosten übersteigen sollten. Das ist bei staatlichen Investitionen grundsätzlich auch angestrebt. Da jedoch häufig die Nutzen nicht unmittelbar in Form finanzieller Einnahmen auftreten (beispielsweise bei einer Investition in einen Radweg oder einen Park), wird hierbei in der Regel die „Wirtschaftlichkeit“ der Investition angestrebt. Nach Landeshaushaltsgesetz, §7, Nr.1, ist das „die günstigste Relation zwischen dem verfolgten Zweck und einzusetzenden Mitteln (Ressourcen)“. Die Wirtschaftlichkeit soll sowohl in der Planungsphase von Maßnahmen, während ihrer Durchführung und nach Abschluss (Erfolgskontrolle) untersucht werden, um eine sparsame Mittelverwendung sicherzustellen (SENINNSP 2009:1).

Die Senatsverwaltung für Inneres und Sport hat 2009 einen „Leitfaden für die Wirtschaftlichkeitsbetrachtung“ erstellen lassen, in dem die verfügbaren Verfahren übersichtlich zusammengestellt und eingehend erläutert sind (SENINNSP 2009: 1-37)\(^{134}\).

<table>
<thead>
<tr>
<th>Verfahren zur Wirtschaftlichkeitsbeurteilung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verfahren zur Bestimmung der Wirkung</td>
</tr>
<tr>
<td>Einzelverfahren</td>
</tr>
<tr>
<td>- Kosten-Nutzen-Analyse</td>
</tr>
<tr>
<td>- Zeit-Saving-Analyse</td>
</tr>
<tr>
<td>- Hedonistische Verfahren</td>
</tr>
<tr>
<td>- Prozessorientiertes Vorgehen</td>
</tr>
<tr>
<td>- Analyse Nutzeffekte</td>
</tr>
<tr>
<td>- Kosten der Funktionsbereiche</td>
</tr>
<tr>
<td>- Schätzung der Wettbewerbswirkung (Portfolio)</td>
</tr>
<tr>
<td>- Analyse der Transaktionskosten</td>
</tr>
<tr>
<td>- FAOR-Methode</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Hilfsverfahren: Sensibilitätsanalyse, Wahrscheinlichkeiten und Szenario-Technik

Dieser Leitfaden erklärt die Vorgehensweise zur Anwendung der verschiedenen Bewertungsverfahren anhand praktischer Beispiele und erörtert ihre jeweiligen Vor- und Nachteile.

Eine Literaturübersicht zu den Schäden und Schadenskosten in den verschiedenen Handlungsfeldern der Deutschen Anpassungsstrategie geben TROLLTSCH/ GÖRLACH/ LÜCKGE et al. (2011), die zur Berechnung der

\(^{134}\) Der Leitfaden steht im Internet zum Download zur Verfügung (URL s. Literaturverzeichnis unter SENINNSP 2009).

6.2. Erweiterung der Kosten – Nutzen-Analyse - Beispiele

Den Herausforderungen, die häufiger und intensiver auftretende Hitzeereignisse für die Menschen und die Wirtschaft in Berlin mit sich bringen, kann u.a. mit zwei unterschiedlichen Maßnahmen begegnet werden, die beide auf eine Reduzierung des Hitzestresses zielen, jedoch in sehr unterschiedlicher Weise:

Für diese exemplarische Kosten-Nutzen-Analyse werden zwei Klimaszenarien zugrunde gelegt, mit denen die Bandbreite der in Kapitel 3 dargestellten Werte mittels eines optimistischen und eines pessimistischen Szenarios abgedeckt werden soll (vgl. Tabelle 26).

<table>
<thead>
<tr>
<th>Klimasignal</th>
<th>Szenario</th>
<th>Nahe Zukunft (2031-2060)</th>
<th>Ferne Zukunft (2071-2100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zunahme von heißen Tagen (t>30°C) (Tage/Jahr)</td>
<td>Optimistisches Szenario</td>
<td>5,38</td>
<td>14,88</td>
</tr>
<tr>
<td></td>
<td>Pessimistisches Szenario</td>
<td>11,04</td>
<td>26,30</td>
</tr>
</tbody>
</table>

Ohne Anpassungsmaßnahmen: Produktivitätsverluste für die Berliner Wirtschaft

<table>
<thead>
<tr>
<th>Absoluter Produktivitätsverlust</th>
<th>Optimistisches Szenario</th>
<th>Pessimistisches Szenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Euro</td>
<td>69.742.369</td>
<td>143.220.936</td>
</tr>
<tr>
<td>In % der Bruttowertschöpfung</td>
<td>0,07%</td>
<td>0,14%</td>
</tr>
</tbody>
</table>

Die Berechnungen ergeben für die Berliner Wirtschaft Produktivitätsverluste aufgrund vermehrter Hitzetage zwischen 70 und 140 Mio. € jährlich. Dies entspricht einem Rückgang der Berliner Bruttowertschöpfung zwischen 0,07 und 0,14%.

Ohne Anpassungsmaßnahmen: Mehr Krankenhausaufenthalte und Todesfälle

Ähnliche Funktionen hinsichtlich der Wirkungen von Temperaturerhöhungen haben PISSARSKOI et al. (2016) in Bezug auf die Morbidität und Mortalität zusammengetragen. Überträgt man die Vorgehensweise dieser Metaanalyse auf die Rahmendaten für Berlin, ergeben sich für die nahe Zukunft im optimistischen Szenario 265, im pessimistischen 544 zusätzliche Krankenhausaufenthalte pro Jahr, in der ferneren Zukunft zwischen 733 und 1296 zusätzliche Krankenhausaufenthalte. In analoger Weise berechnet ergeben sich in naher...
Zukunft zwischen 65 und 134 zusätzliche Hitzetote pro Jahr, in der ferner Zukunft zwischen 180 und 319 zusätzliche Hitzetote in Berlin (Tabelle 28).

Diese Zahlen liegen im Rahmen der auf Berlin bezogenen Studien von GABRIEL (2014) und SCHERBER (2014) ermittelten Werte. Im Vergleich zu den Zahlen aus der Studie von SCHERER et al. (2013), die in Kapitel 4.2.1 zitiert sind (mit 1.000 bis 2.000 zusätzlichen Hitzetoten pro Jahr), erscheinen diese Werte als konservative Schätzung, d.h. die tatsächlichen Werte werden voraussichtlich eher höher als niedriger liegen.

<table>
<thead>
<tr>
<th>Klimafolgen</th>
<th>Optimistisches Szenario</th>
<th>Pessimistisches Szenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zusätzliche Krankenhausaufenthalte pro Jahr</td>
<td>264</td>
<td>544</td>
</tr>
<tr>
<td>Zusätzliche Hitzetote pro Jahr</td>
<td>65</td>
<td>134</td>
</tr>
</tbody>
</table>

Das Gesundheitsrisiko durch Hitzeereignisse ist für die Menschen in Berlin und unter ihnen vor allem für Ältere oder mit Krankheiten vorbelastete also als erheblich einzuschätzen – was das Ergreifen geeigneter Anpassungsmaßnahmen in diesem Feld besonders dringlich macht.

Kosten und Nutzen der Anpassungsmaßnahme „Einbau von Klimaanlagen“

Kosten und Nutzen der Anpassungsmaßnahme „Mehrung von Stadtgrün“

Neben diesen monetären Nutzen ließen sich auf Grundlage der oben beschriebenen temperaturabhängigen Wirkungsfunktionen in der näheren Zukunft jährlich zwischen 36 und 217 Krankenhausaufenthalte und zwischen 14 und 82 Todesfälle vermeiden.

Würden alle diese Effekte im Rahmen einer erweiterten Kosten-Nutzen-Analyse umfassend erfasst und monetarisierter, ergäben sich mit großer Wahrscheinlichkeit Nutzenwerte von mehreren hundert Millionen Euro pro Jahr, also ein Mehrfaches dessen, was in Berlin aktuell zur Anlage und Pflege von Grünflächen investiert wird. Eine genauere Quantifizierung wäre jedoch nur mit einer aufwändigeren Studie zur Monetarisierung der oben qualitativ diskutierten Nutzen möglich.

Fazit zur erweiterten ökonomischen Bewertung potenzieller Anpassungsmaßnahmen

6.3 Zur Bewertung der Wirtschaftlichkeit des Berliner Anpassungskonzepts

Dieser Abschnitt soll abschließend einen Überblick zu qualitativen Einschätzungen hinsichtlich der Kosten-Nutzen-Verhältnisse zentraler Maßnahmen geben. Hierbei wird unterschieden zwischen Maßnahmen, die auch unabhängig vom Klimawandel ein hohes, eindeutig positives Nutzen-Kosten-Verhältnis aufweisen und deren Umsetzung sich daher aller Voraussicht nach auf jeden Fall lohnen würde (No-regret-Maßnahmen). Die zweite Gruppe von Maßnahmen umfasst solche, die unter der Voraussetzung der in diesem Bericht beschriebenen Klimaszenarien ein Nutzen-Kosten-Verhältnis größer eins aufweisen (Nutzen größer als die Kosten), im Falle eines Nicht-Eintretens der Klimaveränderungen aber nicht in jedem Fall lohnend wären (Low-regret-Maßnahmen). Und schließlich gibt es Maßnahmen, die eindeutig nur im Fall des Eintretens deutlicher Klimaveränderungen – wie sie etwa der Weltklimarat in seinem letzten Sachstandsbericht beschreibt (IPCC 2014) – eine positive Nutzen-Kosten-Relation aufweisen, sich andernfalls nicht lohnen würden (Regret-Maßnahmen).136 Maßnahmen, die sich in keinem Fall lohnen würden, ob mit oder ohne Klimawandel, sind im AFOK nicht enthalten.

<table>
<thead>
<tr>
<th>Handlungsfeld</th>
<th>No-regret (++)</th>
<th>Low-regret (+)</th>
<th>Regret (+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menschenliche Gesundheit und Bevölkerungsschutz</td>
<td>MGBS-1 Ausbau von Frühwarnsystemen</td>
<td>MGBS-4 Rettungsdienste und Katastrophenschutz aufstocken</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MGBS-2 Steigerung der körperlichen Fitness</td>
<td>MGBS-5 Klimaanpassung und Pflege</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGBS-3 Anpassung der Medikation und Beratung</td>
<td>MGBS-6 Klimaanpassung im Gesundheitssektor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGBS-10 Hitzeangepasstes Speise- und Getränkeangebot in Kantine und Gaststätten</td>
<td>MGBS-7 Sicherstellen einer ausreichenden Trinkversorgung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGBS-12 Berücksichtigung von Allergiefolgen in der Landschaftsplanung</td>
<td>MGBS-8 Anpassung / Verbesserung des Arbeitsschutzes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gebäude, Stadtentwicklung, Grün- und Freiflächen</th>
<th>GSGF-2 Schaffung öffentlicher Grün- und Freiflächen</th>
<th>GSGF-1 Sicherung der klimatischen Entlastungsräume</th>
<th>GSGF-8 Integration von Klimaanpassung in bestehende Planungsinstrumente und Förderung</th>
<th>GSGF-10 Begrenzung konventioneller Klimaanlagen in (Wohn-)Gebäuden</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW-5 (Trink-)Wasserqualität sichern</td>
<td>WW-1 Entkoppelung der Regenwasserbewirtschaftung von den zentralen Systemen</td>
<td>WW-2 Überflutungstaugliche Gestaltung der Oberfläche der Stadt (Straßen, Plätze, etc.)</td>
<td>WW-4 Anpassung der Anlagen und des Betriebs der Abwasserinfrastruktur an Trockenheit und Hitzeereignisse</td>
<td></td>
</tr>
<tr>
<td>WW-8 Projekt Baden in der Stadt</td>
<td>WW-3 Anpassung der Anlagen der Abwasserinfrastruktur an Starkregenereignisse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW-11 Informationsbereitstellung für gefährdete Stadtgebiete (Risikokarten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN-1 Berücksichtigung der Belange des vorsorgenden Bodenschutzes in der räumlichen Planung</td>
<td>UN-11 Überprüfung von bestehenden Schutzgebieten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN-3 Schutz, Pflege und Renaturierung der Berliner Moorstandorte</td>
<td>UN-9 Informationskampagne „Klimaanpassung im Kleingarten“</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN-6 Sicherung, Pflege und Entwicklung der Berliner Wälder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EnA-4, EnA-5 Verbesserung und Optimierung der Energieinfrastruktur mit Fokus Netze und Speicher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InG-7 Begrenzung von konventionalen Klimaanlagen über Information und Aufklärung</td>
<td>InG-1 Bereitstellung von verlässlichen Wetterprognosen</td>
<td>InG-5 Erstellung und Umsetzung betrieblicher Klimaanpassungskonzepte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InG-8 Verbesserung des sommerlichen Wärmeschutzes bei gewerblichen (Neu-)Bauten</td>
<td>InG-4 Anpassung der Bauförderung und von Ausschreibungen für Bauaktivitäten</td>
<td>InG-6 Erstellung von branchenspezifischen Klimaanpassungskonzepten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VVI-3 Teilmaßnahmen Radverkehr</td>
<td>VVI-1 Aufbringung von angepasstem Straßenbelag</td>
<td>VVI-2 Anpassung der Straßenentwässerung an die zukünftige Starkregenstatistik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VVI-5 Sicherheit und Annehmlichkeit des Fußverkehrs aufrechtzuerhalten</td>
<td>VVI-4 Regelung zur Kühlung im ÖPNV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VVI-3 Teilmaßnahmen Radverkehr</td>
<td>VVI-1 Aufbringung von angepasstem Straßenbelag</td>
<td>VVI-2 Anpassung der Straßenentwässerung an die zukünftige Starkregenstatistik</td>
<td>VVI-4 Regelung zur Kühlung im ÖPNV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VVI-4 Regelung zur Kühlung im ÖPNV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.3 Zur Bewertung der Wirtschaftlichkeit des Berliner Anpassungskonzepts

<table>
<thead>
<tr>
<th>Bildungseinrichtungen bau-</th>
<th>Bildung</th>
<th>BIL-2 Förderung von Schulgärten und anderer Lern- und Erfahrungsorte des Klimawandels</th>
<th>BIL-4 Schulen als Organisationskerne der Erfahrungsaustausches zu Klimaanpassung im Kiez</th>
<th>BIL-7 Verankerung von Klimaanpassung im Unterricht</th>
</tr>
</thead>
</table>

Die qualitativen Einschätzungen ergeben beispielsweise in Bezug auf das Handlungsfeld Gesundheit, dass insbesondere Informations- und Aufklärungsmaßnahmen als sehr kosteneffizient zu betrachten sind, da diese mit relativ geringerem Mittelaufwand große Wirkungen auf die Zahl der Hitzebetroffenen (also auf die Zahl der hitzebedingten Wohlbefindens- und Gesundheitsbeeinträchtigungen, Krankenhausaufenthalte und Todesfälle) erzielen können. Maßnahmen zur Steigerung des Grünanteils in der Stadt sind ebenfalls sehr vorteilhaft – vor allem, weil sie neben lokalen Temperatureffekten in großem Umfang weitere Nebennutzen erzielen.

Als Muster lässt sich erkennen, dass allgemein nachhaltigkeitsorientierte Maßnahmen mit positiven Effekten auf die städtische Lebensqualität (wie beispielsweise die Maßnahme TKS-7 zur Verbesserung der Stadt-Umland-Vernetzung im Bereich Naherholung/ÖPNV) und Maßnahmen, die wenig materielle Investitionen, sondern eher einen Ausbau von Informationsangeboten bedürfen (wie MGKS-1 Ausbau von Hitzefrühwarnsystemen), verstärkt unter den No-regret-Maßnahmen zu finden sind. Kostenintensive Infrastrukturreinvestitionen dagegen, die nur unter der Voraussetzung tatsächlich stattfindender deutlicher Klimaveränderungen lohnend wären (wie VVI-2 Anpassung der Straßenentwässerung an die zukünftige Starkregenstatistik), finden sich definitionsgemäß in der Kategorie „Regret-Maßnahmen“ wieder.

7 Monitoring-Konzept

7.1 Ausgangslage, Anforderungen an ein Klimafolgenanpassungs-Monitoring

- Änderungen der Auswirkungen sowohl auf eine erfolgreiche Implementierung von Maßnahmen, als auch auf eine periodisch anders verlaufende Entwicklung von Wetterparametern zurückzuführen sein kann;
- Zusammenhänge zwischen Wirkung und (positiver wie negativer) Zielerreichung wesentlich komplexer sind, als in den Fragestellungen des Klimaschutzes;
- durch eine sich verschärfende Dynamik in der erwarteten Entwicklung der Wetterparameter ein frühzeitiges Nachjustieren von AFOK-Maßnahmen möglich wird. Selbiges gilt natürlich auch bei einer sich verlangsamenden Entwicklung der Wettersignale.

Existierendes statistisches Datenmaterial ist oftmals mit Blick auf die hier erforderliche Monitoringaufgabe nicht aktuell genug verfügbar oder nicht spezifisch genug für die Messung der Wirkung oder Zielerreichung. Im Rahmen des Monitorings werden demzufolge auch stetig die vorhandenen Datengrundlagen verbessert, zum Teil fehlende Daten neu generiert und weitere Datenlücken aufgezeigt. Die Notwendigkeit für Monitoringsprozesse in den einzelnen Handlungsfeldern ist in der Erstellung dieses Konzepts durch Beiträge der Stakeholder bereits formuliert worden. Beispielsweise zielen Maßnahmen im Handlungsfeld UN darauf ab, existierende Datenlücken durch punktuelle Monitoringprogramme zu schließen. Ein weiteres Beispiel ist die Ausweitung von Wetterstationen über das gesamte Stadtgebiet z.B. in Schulen oder Kitas, um Wetterparameter kleinräumiger auch im Innenstadtbereich aufzunehmen.

Die im Rahmen des AFOK erarbeiteten, konzeptionellen Grundlagen des Monitorings bestehen im Wesentlichen aus drei Bausteinen:

1. Definition, Beschreibung und Datenquellen von State-, Impact- und Response-Indikatoren (Kapitel 7.2 und AFOK-Endbericht, Teil II, Kap. 11)
2. Beschreibung der notwendigen organisatorischen und administrativen Schritte für die Einrichtung und den Betrieb des Monitoringprogramms (Kapitel 7.3) sowie
3. Vorschläge für die datentechnische Umsetzung des Monitorings innerhalb eines digitalen Informationssystems, sowohl im Hinblick auf die Datenerfassung neuer bzw. der Übernahme bestehender Indikatoren sowie der Auswertung und Publikation in Richtung verschiedener Zielgruppen (Kapitel 7.3).

Das Verfahren soll aus Gründen der Aktualität, Kostenersparnis und Komplexität im Rahmen eines Informationssystems strukturiert und weitgehend automatisiert werden. Dabei bietet es sich an, die Indikatoren zur Klimaanpassung gemeinsam mit dem im Berliner Energie und Klimaschutzprogramm (BEK) vorgestellten Monitoringsystem zu entwickeln bzw. in dieses zu integrieren (vgl. HIRSCH/ REUSSWIG/ WEISS et al. 2015: 164ff). Das System muss flexibel sein, sodass zukünftig veränderte Randbedingungen, neue Maßnahmen oder Indikatoren hinzugefügt werden können.

7.2 Indikatorensset

Grundlage der nachfolgend definierten Impact- und Response-Indikatoren sind die Klimawirkungspfade der einzelnen Handlungsfelder. Sie zeigen die konkreten Betroffenheiten durch die in Zukunft verstärkt zu erwartenden Wettervariablen bzw. stellen sie die mögliche Wirkung von entsprechenden Anpassungs-

<table>
<thead>
<tr>
<th>Indikatortyp</th>
<th>Erläuterung</th>
<th>Verwendung im AFOK (Anzahl/ Kategorien)</th>
</tr>
</thead>
</table>
| Response-Indikatoren | Responseindikatoren beinhalten Messungen oder Ermittlungen der Zielerreichung der definierten Anpassungsmaßnahme. Responseindikatoren lassen sich weiterhin in zwei Gruppen unterscheiden:
- Die Ergebnisindikatoren, die die tatsächliche Auswirkung der Maßnahme messen. In einigen Fällen ist der Ergebnisindikator identisch mit einem Impact-Indikator und wird daher nicht gesondert behandelt. | A: Hierbei handelt es sich um Indikatoren, die in regelmäßigen Abständen messbar sowie kostenlos verfügbar sind. Diese 47 Indikatoren bilden die Grundlage des Monitoringprogramms des AFOK.
B: Hierbei handelt es sich um 3 Indikatoren, die als Ergänzung der unter A genannten Indikatoren dienen.
C: Hierbei handelt es sich um 24 binäre Indikatoren, die lediglich überprüfen, ob eine Maßnahme durchgeführt wurde. Dies sind vor allem Maßnahmen, die z. B. eine Studie oder die Einrichtung eines Monitoringprogramms beschreiben.
D: Hierbei handelt es sich um 20 Indikatoren von qualitativer Art. Sie beschreiben eine Evaluation der Maßnahme nach einer gewählten Anzahl von Jahren mittels eines Reports. |

Tabelle 30: Indikatortypen und Kategorien des AFOK in der Übersicht.
Quelle: Eigene Darstellung.

137 Vgl. das analoge Vorgehen für die Responseindikatoren des BEK-Monitoringkonzepts (HIRSCHL/ REUSSWIG/ WEIß et al. 2015).
7.2 Indikatorenset

7.2.1 State-Indikatoren

Das Monitoring von State-Indikatoren verfolgt, neben dem bereits genannten Ziel, Veränderungen in Intensität und Inhalt von Anpassungsmaßnahmen frühzeitig vorzunehmen, vier weitere Zielstellungen:

- Verifikation der Klimaprojektionen durch Vergleich tatsächlicher Messwerte mit Klimaprojektionen,
- räumliche Schärfung von Modellwerten und damit Ermittlung kleinräumiger Belastungen,
- Bewertungsgrundlage für den Erfolg von Anpassungsmaßnahmen,
- mögliche Erfassung von Trends in relevanten meteorologischen Parametern die sich der Klimamodellierung bisher entziehen.

Verifikation der Klimaprojektionen

Bewertungsgrundlage für den Erfolg von Anpassungsmaßnahmen

Berechnungsmethodik

Rohdaten für State-Indikatoren

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Quelle</th>
<th>Basis für folgende Indikatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tageshöchsttemperatur</td>
<td>DWD</td>
<td>Hitzetage*</td>
</tr>
<tr>
<td>Tagesmitteltemperatur</td>
<td>DWD</td>
<td>Jährliche/ Saisonale Mittel*</td>
</tr>
<tr>
<td>Tagesniederslag</td>
<td>DWD</td>
<td>Tropische Nächte*</td>
</tr>
<tr>
<td>Mittlere Windgeschwindigkeit</td>
<td>DWD</td>
<td>Jährliche/ Saisonale Mittel</td>
</tr>
<tr>
<td>Gesamtabfluss</td>
<td>ECMWF 2016</td>
<td>Jährliche/ Saisonale Mittel</td>
</tr>
</tbody>
</table>

Tabelle 31: Rohdaten für die Status-Indikatoren. Quelle: Eigene Darstellung.

Sowohl für die Verifikation der klimatischen Entwicklung als auch als Basis für die Analyse der Wetterabhängigkeit sind die Berechnungen der Indikatoren zu Beginn identisch. Lediglich zum Ende der Bearbeitung werden für die erste Zielstellung Trends und Mittelwertvergleiche erstellt und für die zweite Zielstellung Zeitreihen der täglichen Rohdaten benötigt, um sie mit den Schutzgutdaten zu korrelieren. Für die Berechnung der Indikatoren muss nur eine geringe Zahl von Rohdaten heruntergeladen werden (Tabelle 31, oben).

<table>
<thead>
<tr>
<th>State-Indikator</th>
<th>Definition/-Einheit</th>
<th>Beschreibung des Indikators</th>
<th>Methodik, Rechenweg</th>
<th>Info-Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitzetage*</td>
<td>d/a</td>
<td>Tag über 30 °C Tmax</td>
<td>jährliche Anzahl Tage über Grenzwert</td>
<td>ZHANG et al. 2011</td>
</tr>
<tr>
<td>Eistage*</td>
<td>d/a</td>
<td>Tag unter 0 °C Tmin</td>
<td>jährliche Tage unter Grenzwert</td>
<td>ZHANG et al. 2011</td>
</tr>
<tr>
<td>Schnee</td>
<td>d/a</td>
<td>Niederschlag an Tagen unter 1 °C Tmin</td>
<td>Tage unter 1 °C auswählen und Niederschläge an diesen Tagen aufsummieren</td>
<td>Ohne Quelle</td>
</tr>
<tr>
<td>0 °C – Durchgänge</td>
<td>d/a</td>
<td>Tage mit Tmax>0 °C und Tmin<0 °C</td>
<td>Anzahl Tage pro Jahr, an denen beide Bedingungen zutreffen</td>
<td>Ohne Quelle</td>
</tr>
<tr>
<td>Max. Niederschlag in 5d</td>
<td>mm/a</td>
<td>5-Tagesumme des Niederschlags</td>
<td>Laufende 5-Tagessummen durch Zeitreihe schieben und jährliche Maxima bestimmen.</td>
<td>ZHANG et al. 2011</td>
</tr>
<tr>
<td>Starkregentage*</td>
<td>d/a</td>
<td>Tage über 10/20 mm Niederschlag</td>
<td>Anzahl der Tage, an denen Grenzwert überschritten</td>
<td>ZHANG et al. 2011</td>
</tr>
<tr>
<td>Trockenphasen (CDD)*</td>
<td>d/a</td>
<td>Längste Phase mit Niederschlag < 1mm</td>
<td>Schrittweise durch Zeitreihe; Dauer von zusammenhängenden Tagen unter 1 mm Niederschlag bestimmen; längste Phase pro Jahr ermitteln</td>
<td>ZHANG et al. 2011</td>
</tr>
<tr>
<td>Trockenphasen (DrySpells)</td>
<td>d/a</td>
<td>Längste Phase mit mind. 20 Tagen, im Mittel über 20°C Mitteltemperatur und unter 1 mm Niederschlag</td>
<td>Bestimmung aller Tage, die im laufenden 20-Tagesmittel von Temperatur und Niederschlag Grenzwerte einhalten; Aufsummierung pro Jahr</td>
<td>KRYSANOVA et al. 2008</td>
</tr>
</tbody>
</table>

7.2 Indikatorenset

Trends außerhalb der Klimamodellierung

Es gibt verschiedene meteorologische Parameter, welche bisher nur schwer oder gar nicht durch die Klimamodellierung abzudecken sind. Dazu gehören z.B. Hagel- oder Gewitterereignisse. Im Rahmen des Monitorings sollten Versuche unternommen werden, auch diese Größen mit validen Statistiken zu deren zeitlicher Entwicklung zu hinterlegen.

7.2.2 Impact- und Response-Indikatoren

<table>
<thead>
<tr>
<th>Handlungs-</th>
<th>Wirkungs-</th>
<th>Response-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebäudefeld</td>
<td>- Klimatische Belastung Stadtgebiete</td>
<td>Verlust/ Zunahme öffentlicher, privater Wohlfühlorte</td>
</tr>
<tr>
<td>- Grünvolumen</td>
<td></td>
<td>Verlust/ Zunahme klimatischer Entlastungsräume</td>
</tr>
<tr>
<td>- Zustand der Straßenbäume*</td>
<td></td>
<td>Report: Durchführung von Pilotprojekten zur Erprobung von Klimaanpassungsmaßnahmen</td>
</tr>
<tr>
<td>- Versiegelung/ Entsiegelung*</td>
<td></td>
<td>Report: Entwicklung von Strategien zur klimatischen Entkopplung von Neubauvorhaben</td>
</tr>
<tr>
<td>- Gedächnistürme</td>
<td></td>
<td>Report: Initiierung Stadtedebate zum Paradigmenwechsel Regenwassermanagement „Schwammstadt“</td>
</tr>
<tr>
<td>- Vegetationsdichte</td>
<td></td>
<td>Report: Integration von Klimaanpassung in bestehende Planungsinstrumente</td>
</tr>
<tr>
<td>Gesundheit & Bevölkerungsschutz</td>
<td>- Todesfälle in Folge von Herz-/ Kreislauf- erkrankungen*</td>
<td>Report: Sensibilisierung und Information</td>
</tr>
<tr>
<td>- Todesfälle in Folge von Atemwegserkrankungen*</td>
<td></td>
<td>Report: Steigerung der Resilienz des Stadtgrüns</td>
</tr>
<tr>
<td>- Pollenflug Ambrosia*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Badewasserqualität an Badestellen*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Algenvorkommen*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Notfälleinsätze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Anteil hitzeangepasster Speisen am Speiseangebot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- BMI pro Altersgruppe der Bevölkerung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Dichte der Belastung mit allergenen Pflanzenstoffen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Dichte der Belastung mit Zecken, infizierten Mücken etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Dichte von Trinkbrunnen und anderen öffentlich zugänglichen kostenlosen Trinkwasserangeboten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- durchschnittliche Zeit bis zum Eintreffen am Notfallort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- prozentualer Anteil der beratenen Bevölkerung (Reichweite)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Reichweite von Warnmeldungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Zahl der hitzebedingten Arbeitsunfälle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Zahl der hitzebedingten Einlieferungen in Krankenhäuser und Sterbefälle (im Gesundheitssektor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Zahl der hitzebedingten Einlieferungen in Krankenhäuser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handlungsfeld</td>
<td>Wirkungsindikatoren</td>
<td>Responseindikatoren</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Tourismus, Kultur & Sport</td>
<td>- Touristen in Berlin</td>
<td>- Anfangs- und Endzeiten der Kulturveranstaltungen</td>
</tr>
<tr>
<td></td>
<td>- Anzahl der abgebrochenen/agensagten Veranstaltungen durch Extremereignisse</td>
<td>- Anfangs- und Endzeiten der Sporttrainings</td>
</tr>
<tr>
<td></td>
<td>- Entwicklung der Fahrgastzahlen im ÖPNV</td>
<td>- Außensportanlagen mit Drainagesystem bzw. Kunstrasen</td>
</tr>
<tr>
<td></td>
<td>- Verkehrsbelastung</td>
<td></td>
</tr>
<tr>
<td>Umwelt & Natur</td>
<td>- div. Parameter der Bodendauerbeobachtung</td>
<td>- Flächenbilanz Ver- und Entsiegelung</td>
</tr>
<tr>
<td></td>
<td>- Biotopkartierung</td>
<td>- Renaturierung der prioritären Moore Berlins (Braunmoosmoore, Steckbriefe siehe Link)</td>
</tr>
<tr>
<td></td>
<td>- Kartierung der Schäden an den Waldbäumen</td>
<td>- umgebraute Flächen gemäß Berliner Mischwaldprogramm</td>
</tr>
<tr>
<td></td>
<td>- phänotageische Vegetationszeit*</td>
<td>- Versiegelung auf Schutzkategorien der Planungshinweiskarte 01.13</td>
</tr>
<tr>
<td></td>
<td>- Ankunftszeiten Zugvögel*</td>
<td>- Report: Erreichung des Pflegeziels der Kulturlandschaft</td>
</tr>
<tr>
<td></td>
<td>- Häufige Brutvogelarten*</td>
<td>- Report: Überprüfung des Schutzzwecks im jeweiligen Schutzgebiet</td>
</tr>
<tr>
<td></td>
<td>- Wasservögel im Winterhalbjahr</td>
<td>- Grünvolumenzahl pro Flächeneinheit</td>
</tr>
<tr>
<td></td>
<td>- überwinternde Fledermäuse*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Schaderreger*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Baumartenzusammensetzung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- div. Parameter des ICP Forest Level-II-Monitorings*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- div. Parameter des Moormonitorings*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Waldbrand</td>
<td></td>
</tr>
<tr>
<td>Industrie, Gewerbe & Finanzwirtschaft</td>
<td>- Anzahl der wetterbedingten Produktionsausfälle in der Wirtschaft</td>
<td>- Anzahl an erstellten branchespezifischen Anpassungskonzepten</td>
</tr>
<tr>
<td></td>
<td>- Innenraumtemperatur in öffentlichen Gebäuden</td>
<td>- Anzahl an erstellten und umgesetzten betrieblichen Anpassungskonzepten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Anzahl an umgesetzten Aktivitäten im Bereich verbesserter sommerlicher Wärmeschutz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Anzahl an umgesetzten physischen/ organisatorischen Vorsorgemaßnahmen bei Bauaktivitäten/ erfolgte tarifliche Vorsorge</td>
</tr>
<tr>
<td>Handlungs-</td>
<td>Wirkungs-</td>
<td>Response-</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Verkehr &</td>
<td>- Luftqualität: Hitzeeffek-</td>
<td>- Reparaturen von witterungs-</td>
</tr>
<tr>
<td>Verkehrsinfrastruktur</td>
<td>t-Impakt auf Ozon-</td>
<td>bedingten Straßenschäden</td>
</tr>
<tr>
<td></td>
<td>konzentration</td>
<td>- Verkehrsstörungen durch</td>
</tr>
<tr>
<td></td>
<td>- Straßenverkehrs-</td>
<td>Starkregenerereignisse</td>
</tr>
<tr>
<td></td>
<td>unfallgeschehen:</td>
<td>(Straße und Schiene)</td>
</tr>
<tr>
<td></td>
<td>Unfälle mit Zweiradteiligung</td>
<td>- Anteil Radverkehr</td>
</tr>
<tr>
<td></td>
<td>- Straßenverkehrs-</td>
<td>- Anteil Fußverkehr</td>
</tr>
<tr>
<td></td>
<td>unfallgeschehen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unfälle mit Fußgängerteiligung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- NO₂/ NOₓ*</td>
<td></td>
</tr>
<tr>
<td>Wasser-</td>
<td>- Lokale Hochwasser-</td>
<td>Abflussmenge umgebaute/neu</td>
</tr>
<tr>
<td>haushalt &</td>
<td>ereignisse</td>
<td>gebaute Gebiete</td>
</tr>
<tr>
<td>Wasserwirtschaft</td>
<td>- Oberflächenwasser:</td>
<td>- Dichte von Trinkbrunnen und</td>
</tr>
<tr>
<td></td>
<td>Biologische Gewässergüte</td>
<td>anderen öffentlich zugängli-</td>
</tr>
<tr>
<td></td>
<td>- Oberflächenwasser:</td>
<td>chen kostenloser Trinkwasser-</td>
</tr>
<tr>
<td></td>
<td>Chemisch/physikalische</td>
<td>angeboten</td>
</tr>
<tr>
<td></td>
<td>Gewässergüte</td>
<td>- Stauraumkapazität der</td>
</tr>
<tr>
<td></td>
<td>- Grundwasserstand</td>
<td>Kanalisation</td>
</tr>
<tr>
<td></td>
<td>- Temperatur Grundwasser*</td>
<td>- Überschwemmungs-, Überflut-</td>
</tr>
<tr>
<td>Energie- &</td>
<td>- Potenzieller energie-</td>
<td>tungs- sowie Verdunstungsflä-</td>
</tr>
<tr>
<td>Abfallwirtschaft</td>
<td>basierter Kühlbedarf</td>
<td>chen</td>
</tr>
<tr>
<td></td>
<td>- Anzahl der Stromausfälle</td>
<td>- Zunahme der Bademöglichkei-</td>
</tr>
<tr>
<td></td>
<td>- Heizenergieverbrauch</td>
<td>ten in den Stadtgewässern</td>
</tr>
<tr>
<td></td>
<td>öffentlicher Wärmeertraum</td>
<td>- Zunahme entkoppelter Ge-</td>
</tr>
<tr>
<td></td>
<td>— Fernwärme</td>
<td>biete</td>
</tr>
<tr>
<td></td>
<td>- Heizenergieverbrauch</td>
<td>- Report: Integration des</td>
</tr>
<tr>
<td></td>
<td>öffentlicher Wärmeertraum —</td>
<td>Themas „Wassersensible Stadt-</td>
</tr>
<tr>
<td></td>
<td>Abwärme</td>
<td>entwicklung“</td>
</tr>
<tr>
<td></td>
<td>— Erdverkabelung und Ausbau</td>
<td>- Durchführung von Maßnahmen</td>
</tr>
<tr>
<td></td>
<td>— Abwärme</td>
<td>der Anpassung der Abwasser-</td>
</tr>
<tr>
<td></td>
<td>— Kilometer/anteilig in Pro-</td>
<td>infrastruktur an Trockenheit</td>
</tr>
<tr>
<td></td>
<td>zenten (Leistung)</td>
<td>und Hitzeeignisse (z.B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anpassung des Querschnitts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>der Kanalisation, Reinigungs-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zyklen, Geruchsfilter usw.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Projektionen zu Berliner</td>
</tr>
</tbody>
</table>

Verkehr & Verkehrsinfrastruktur

- Luftqualität: Hitzeimpakt auf Ozonkonzentration
- Straßenverkehrsunfallgeschehen: Unfälle mit Zweiradbeteiligung
- Straßenverkehrsunfallgeschehen: Unfälle mit Fußgängerbeteiligung
- NO$_2$/ NO$_x$*

Wasserhaushalt & Wasserwirtschaft

- Lokale Hochwassereignisse
- Oberflächenwasser: Biologische Gewässergüte
- Oberflächenwasser: Chemisch/physikalische Gewässergüte
- Grundwasserstand
- Temperatur Grundwasser*
- Abflussmenge umgebaute/neu gebaute Gebiete
- Dichte von Trinkbrunnen und anderen öffentlich zugänglichen kostenlosen Trinkwasserangeboten
- Stauraumkapazität der Kanalisation
- Überschwemmungs-, Überflutungs- sowie Verdunstungsflächen
- Zunahme der Bademöglichkeiten in den Stadtgewässern
- Zunahme entkoppelter Gebiete
- Report: Integration des Themas „Wassersensible Stadtentwicklung“
- Durchführung von Maßnahmen der Anpassung der Abwasserinfrastruktur an Trockenheit und Hitzeeignisse (z.B. Anpassung des Querschnitts der Kanalisation, Reinigungszyklen, Geruchsfilter usw.)
- Projektionen zu Berliner Wasserbilanz, Zunahme/Abnahme Grundwasserneubildung durch Klimaveränderung und Auswirkungen

Energie- & Abfallwirtschaft

- Potenzieller energiebasierter Kühlbedarf
- Anzahl der Stromausfälle
- Heizenergieverbrauch öffentliche Verwaltung — Fernwärme
- Heizenergieverbrauch öffentliche Verwaltung — Gas
- Anzahl an geförderten Modellvorhaben
- Anzahl und Art der Aktivitäten zur institutionellen Vorsorge
- Realisierte Projekte an zusätzlichen solaren Stromspeichern
- Realisierte Projekte zur Nutzung von gespeicherter Abwärme
- Realisierte Strecke an Erdverkabelung und Ausbau Leistungsnetz, inkl. realisierter dezentrale Nutzung von Abwärme; Kilometer/anteilig in Prozent (Leistung)
- Report: Anpassung Abfallentsorgung an Hitzewellen
- Report: Art und Anzahl, Umfang von Kampagnen, Informationen etc. zur Popularisierung der Abfallvermeidung
7.3 Implementierungsstrategie

Die organisatorischen Aufgaben sind:

1. Organisatorischer und administrativer Rahmen des gemeinsamen Monitorings (AFOK, BEK);
2. Betrieb oder Betreuung des digitalen Informationssystems zum Monitoring (im BEK und nachfolgend „dIBEK“ genannt);
3. Organisation der Datenbeschaffung aus bestehenden Datenquellen und für neu zu schaffende Indikatoren;
4. Indikatorensamenführung. Überwachung der Indikatorentwicklung inkl. Anpassung von Zielvorgaben, Qualitätsmanagement;
5. Organisation der Öffentlichkeitsarbeiten, wie Monitoringberichte und online-Portal-Lösungen;
6. Überwachung der Normen und Standards wie Datenschutzaspekte, INSPIRE 1.40, Informationsfreiheitsgesetz, etc. (vgl. UBA 2011; HIRSCHL/REUSSWIG/WEIß et al. 2015).

Dem Grundgedanken moderner IT-Infrastrukturen folgend empfiehlt es sich, die Erfassung, den Betrieb (Verstetigung) und die digitale Bereitstellung der rollierenden Indikatoren in die Hände der jeweiligen Fachverwaltungen oder fachlich geeigneten Stellen zu legen und damit operativ von der federführenden Administration zu trennen.

Tabelle 33: Impact- (Kategorie I) und Response-Indikatoren (Kategorien A und D) pro Handlungsfeld. Eigene Darstellung.
Nachfolgend dargestellt ist die Liste der potenziellen Indikatorenbeauftragten, die jeweils über Geschäftsbesorgungsverträge oder sonstige Vereinbarungen für die Indikatorenerhebung des AFOK aktiviert werden sollten (Tabelle 34).

<table>
<thead>
<tr>
<th>Potenzielle Indikatorenbeauftragte (Übersicht)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amt für Statistik Berlin-Brandenburg (AfS)</td>
</tr>
<tr>
<td>Apotheker-Verband Berlin</td>
</tr>
<tr>
<td>Ärztekammer Berlin</td>
</tr>
<tr>
<td>Berliner Bäder-Betriebe</td>
</tr>
<tr>
<td>Berliner Bezirksämter (Grünflächen- und Gesundheitsämter)</td>
</tr>
<tr>
<td>Berliner Feuerwehr</td>
</tr>
<tr>
<td>Berliner Forsten</td>
</tr>
<tr>
<td>Berliner Gaswerke Aktiengesellschaft (GA-SAG)</td>
</tr>
<tr>
<td>Berliner Polizei</td>
</tr>
<tr>
<td>Berliner Verkehrsbetrie (BVG)</td>
</tr>
<tr>
<td>Berliner Wasserbetrie (BWB)</td>
</tr>
<tr>
<td>Bund Deutscher Architekten (BDA)</td>
</tr>
<tr>
<td>Deutsche Bahn (DB)</td>
</tr>
</tbody>
</table>

Tabelle 34: Liste der vorgeschlagenen Datenquellen und Indikatorbeauftragten des AFOK.
Quelle: Eigene Darstellung.

Das Informationssystem dIBEK (Name hier als Synonym genutzt) als zentrales Instrument des Monitorings fungiert in diesem Kontext als IT-Infrastrukturknoten. Es führt die Indikatoren über standardisierte Schnittstellen mit den datenhaltenden Stellen zusammen, beinhaltet Organisations- und Analysefunktionalitäten und schafft über Auskunftskomponenten die Basis für eine mögliche Bürgerinformation, sowohl online als auch in Form graphischer oder kartographischer Ausgaben für periodische Monitoringberichte" (HIRSCHL/REUSSWIG/WEISS et al. 2015: 168).

Grundlage des in Abbildung 95 dargestellten Strukturvorschlags zum dIBEK ist daher ein vollständig serverbasiertes System; alle Funktionen werden über Internet-Technologie zur Verfügung gestellt, es wird keinerlei Anwendersoftware benötigt.

Der Zugang zum zentralen Datenbestand wird je nach Funktion des Nutzers über individualisierte Portale realisiert, die aufgabenbezogene Funktionalitäten beinhalten (Datenimport, Erzeugung von Grafiken, Analysen und Plausibilitätsprüfungen, etc.). Dabei können grundsätzlich drei spezifische Portale unterschieden werden: Das Administrationsportal, das Portal für Indikatorenbeauftragte und das Portal für die breite Öffentlichkeit sowie mit ggf. erweitertem Content für die Fachöffentlichkeit, Verwaltung und Politik.
Technische Spezifikationen und Beispiele

Ablauf des Monitoring

Wie oben bereits erwähnt, erscheint für die Indikatoren eine fünfstündige Begutachtung der Rohdaten sinnvoll.

Kosten

Für das Monitoring fallen drei grundsätzliche Kostenarten an:

- **Ersteinrichtung des digitalen Informationssystems dIBEK**: Wie in den technischen Spezifikationen beschrieben, sind die benötigten technischen Komponenten bereits im Zusammenhang mit dem Planungsinformationssystem erfolgreich im Einsatz, eine Übernahme dieser Komponenten wäre für das dIBEK technisch sinnvoll (vgl. oben, Text und Abbildung 95). Die Länder Berlin und Brandenburg verfügen bereits über die vollständigen Nutzungsrechte der verwendeten Basiskomponenten und der Programmsstruktur des PLIS. Eine Nutzung der Komponenten ist für die Landesverwaltungen beider Länder kostenfrei möglich. Es fallen nur Kosten für die Ersteinrichtung und technische Anpassung an die Spezifikationen des dIBEK an, die bereits im BEK berechnet wurden. Neben dem dort genannten Aufwand von ca. 50.000 bis 150.000 € muss für das AFOK, vor allem für die Implementierung der Impact- und Response-Indikatoren, mit zusätzlich 30.000 bis 100.000 € gerechnet werden.

8 Kommunikation

8.1 Notwendigkeit von Klimaanpassungskommunikation

Mit der Entwicklung der Klimaszenarien, der Identifikation der Vulnerabilitäten, der Herleitung der Maßnahmen und einem Monitoringkonzept ist die Klimaanpassungsstrategie für Berlin noch nicht vollständig. Es braucht noch ein eigenes Kommunikationskonzept, um all die genannten Aspekte in die weitere Stadtöffentlichkeit zu tragen, dort die Umsetzung anzuregen und für Unterstützung zu werben. Ohne aktive Beteiligung der Stadtgesellschaft an der Umsetzung von Anpassungsmaßnahmen, ohne die Akzeptanz der Ziele, ohne ein Verständnis dafür, warum diese sinnvoll und notwendig sind, werden Politik und Verwaltung auch ein noch so gut durchdachtes Konzept nicht umsetzen können.

8.1 Notwendigkeit von Klimaanpassungskommunikation

maschutz zu bringen scheint. Klimaanpassungskommunikation ist daher nötig, weil sie einen relativ neuen Teilbereich der Klimapolitik als sachlich komplementär (nicht: konkurrierend) und moralisch gleichwertig (nicht inferior) zum Klimaschutz darstellen muss.

Allerdings hat die Wahrnehmung der eigenen Betroffenheit durch den Klimawandel gerade in jüngster Zeit zugenommen (vgl. Abbildung 96).

Diese deutschlandweiten Werte der Umweltbewusstseinsstudie können durch Berlin-spezifische Befunde ergänzt werden. Im Sommer 2013 wurde eine repräsentative telefonische Bevölkerungsbefragung im Auftrag des Umweltbundesamtes durchgeführt, um speziell Hitzewarnsysteme in Deutschland zu evaluieren. 4.000 Personen beantworteten Fragen zur ihrer Gesundheit, ihrem Informationsverhalten, zur Risikowahrnehmung und zur Kenntnis der Warnsysteme. Eine Frage zielte auf die wahrgenommene persönliche gesundheitliche Beeinträchtigung durch Hitzeperioden; die Ergebnisse sind nach Bundesländern differenziert (vgl. Abbildung 97).

Es fällt auf, dass die Berliner Werte („sehr betroffen“) mit 32,2 % die zweitniedrigsten sind – nur in Mecklenburg-Vorpommern sehen sich noch weniger Menschen durch Hitzewellen gesundheitlich beeinträchtigt. Dabei rangiert Berlin ganz vorn in der deutschlandweiten Betroffenheitsanalyse durch Hitzebelastung des Netzwerks Vulnerabilität (BUTH et al. 2015: 609). Diese Diskrepanz zwischen hoher objektiver Betroffenheit und relativ geringem Problembewusstsein ist selbst ein Faktor, der zur Vulnerabilität beiträgt, denn je geringer das Problembewusstsein, desto geringer auch die Wahrscheinlichkeit für individuelle Schutzmaßnahmen.
8.2 Ziele der Anpassungskommunikation

Kommunikation zur Förderung der Anpassung an den Klimawandel verfolgt bestimmte Ziele, die sich aus der Ausgangssituation sowie der Anpassungsstrategie ergeben:

1. **Aufklärung und Information.** Vielen Menschen ist noch immer nicht bewusst, dass der Klimawandel ihre Arbeits- und Lebensbedingungen, letztlich den gesamten „Organismus“ Stadt berühren und teilweise negativ verändern wird. Neben dem Faktor Nichtwissen („Klimawandel – was ist das?“) spielt dabei der Faktor Halbwissen („Klimawandel – gibt’s doch gar nicht; ist doch alles natürlich“) eine nicht zu vernachlässigende Rolle. Ersterer prägt oft die Kommunikation über Klimawandel in bildungsfernen Schichten, während letzterer sich gerade in gebildeteren Schichten findet.

Verantwortungsvolle Klima(-anpassungs)kommunikation muss dem belastbaren Wissen entgegensetzen, den Stand der Forschung korrekt wiedergeben, Unsicherheiten und Modellspannbreiten gegebenenfalls erläutern und so die Grundlage für Klimaschutz und Klimaanpassung legen.\(^\text{142}\) Glaubwürdigkeit ist dabei eine Kernressource (vgl. Beitrag Grothmann auf AFOK-Kommunikationsworkshop; \(\rightarrow\) Kap. 14.3). Kerngruppen, die erfahrungsgemäß in anderen Anpassungskommunikationskonzepten nicht oder kaum erreicht wurden, sind: Jugendliche, Migranten/-innen, untere Bildungs- und Einkommensschichten (vgl. Beiträge Born und Nies auf AFOK-Kommunikationsworkshop; \(\rightarrow\) Kap. 14.3). Alle ausgewerteten Erfahrungen im

\(^\text{141}\) Vgl. AFOK-Endbericht Teil II, Materialien, Kap. 14.3.

\(^\text{142}\) Es kann durchaus sinnvoll sein, eher von Modellspannbreiten als von Unsicherheiten zu sprechen, wird letztere doch leicht als Uneinigkeit der Wissenschaft mit Blick auf grundlegende Fragen (z.B. Attributierung des beobachteten Klimawandels, basaler Mechanismus der globalen Erwärmung) missverstanden. Je nach Kontext muss deutlich gemacht werden, dass die raum-zeitliche Lokalisierung der Wirkfolgen mit Unsicherheiten behaftet ist, nicht aber die Attributierung etc. (Anmerkung Daschkeit auf AFOK-Workshop Anpassungskommunikation).
8.3 Zielgruppen, Botschaften und Strategien der Anpassungskommunikation

Bereich der Anpassungskommunikation zeigen zudem, dass Klarheit und einfache Verständlichkeit der kommunizierten Sachverhalte wichtig sind, um Aufmerksamkeit und Nachvollziehbarkeit zu erzielen.

 Diese übergreifenden Ziele können situativ in ganz verschiedene Formate und Strategien umgesetzt werden, die auf die jeweilige Zielgruppe der Kommunikation zugeschnitten sein müssen.

8.3 Zielgruppen, Botschaften und Strategien der Anpassungskommunikation

Kommunikation hat nicht nur Ziele, sie richtet sich stets auch an bestimmte Zielgruppen. Diese können sehr weit gefasst sein („die allgemeine Öffentlichkeit“), sie können aber auch sehr spezifisch definiert werden (z.B. „Jugendliche aus sozial prekären Milieus mit Migrationshintergrund in Nord-Neukölln“). Je nach Zweck und auch Phase des Kommunikationsprozesses kann sich der Zuschnitt oder die „Körnung“ der Zielgruppendeckung anders darstellen. Mit Blick auf den aktuellen Stand der Klimaanpassungskommunikation in Berlin – also etwa vor dem Hintergrund von SENSTADTUm 2011 und den Erfahrungen des
AFOK-Stakeholderprozesses – lassen sich folgende allgemeine Zielgruppen benennen, die es kommunikativ zu erreichen gilt:

- **Fachöffentlichkeit.** Der Klimawandel besitzt neben seinem Querschnittscharakter auch die Eigenschaft, differenzierte Betroffenheiten zu erzeugen. Klimaanpassung übersetzt sich in unterschiedliche Fachkontexte ebenfalls nicht gleichartig. Eine funktionale ausdifferenzierte und oft stark wissensbasierte Stadtgesellschaft ist immer auch der Ort von Fachdiskursen in Fachöffentlichkeiten – und genau diese müssen kommunikativ erreicht werden. Teilweise besteht dabei eine Überschneidung zu dem etwas etablierteren Themenbereich Klimaschutz/ Klimaneutralität, die genutzt werden kann. Wichtige Fachöffentlichkeiten wären etwa die Community der Planer/-innen (Stadt- und Freiraumplanung, Architektur, Verkehrsplanung), die Wissenschaft, wichtige Branchendiskurse (z.B. Wohnungswirtschaft, Gesundheitswirtschaft, Wasserwirtschaft) oder sektorenübergreifende strategische Themenfelder (z. B. Klimaneutralität, Smart City, Green Economy, Urban Gardening).

- **Vulnerable Bevölkerungsgruppen, Unternehmen/ Branchen.** Der Klimawandel wird die Stadtgesellschaft und die städtische Ökonomie in unterschiedlichem Maße treffen. Eine Zielgruppe der Anpassungskommunikation sind genau diese besonders vulnerablen Gruppen der Stadtgesellschaft (z.B. Ältere, Kranke, einkommensschwache und bildungsferne Schichten, Kinder (→Eltern), sozial Isolierte, Menschen mit schlechten deutschen Sprachkenntnissen, Draußenbeschäftigte) und der Berliner Wirtschaft (z.B. Gesundheitsbranche, Wohnungswirtschaft, Land- und Forstwirtschaft, Wasserwirtschaft).

Hier einige Kernbotschaften, die Anpassungskommunikation vermitteln könnte:

- „Der Klimawandel macht um Berlin keinen Bogen und geht uns alle an“
- „Ihr seid besonders gefährdet“
- „Eure Eigenleistung ist gefordert – ihr solltet, aber ihr könnt auch etwas tun, und zwar…“
- „Klimawandel und Klimaanpassung – eine Chance für Berlin allgemein und Euch besonders“
- „Wir brauchen Eure Unterstützung/ Akzeptanz“
- „So kann Klimaanpassung aussehen“

9. Ausblick

Das AFOK zeigt die Vulnerabilitäten für Berlin aufgrund des Klimawandels und die Maßnahmen auf, die geeignet sind, um Risiken und Schäden der natürlichen, gesellschaftlichen oder ökonomischen Systemen und Infrastrukturen sowie Beeinträchtigungen von Lebensqualitäten zu vermeiden oder zumindest mindern. Im Rahmen des AFOKs werden eine Vielzahl an grundsätzlich geeigneten Maßnahmen der Klimaanpassung für die jeweiligen Handlungsfelder vorgeschlagen; es werden die Art der Maßnahme und die angestrebten Wirkungen und damit verbundene Nebeneffekte beschrieben.

Die notwendigen weiteren Schritte zur Umsetzung, mögliche Akteure der Maßnahmen und erste Hinweise für Finanzierungsmöglichkeiten werden in den Maßnahmeblättern genannt.

In der Zukunft wird es darum gehen, in den einzelnen Handlungsfeldern die vorgeschlagenen Maßnahmen weiter zu konkretisieren, die Feinjustierungen durchzuführen und Akteure zusammuzuführen.

Anders als beim Klimaschutz, in dem in Berlin über einen längeren gesellschaftlichen und politischen Diskussionsprozess auf der Grundlage der Machbarkeitsstudie Klimaneutrales Berlin 2050 und im Energiewendegesetz konkrete, messbare Ziele formuliert wurden, liegen für die Klimaanpassung in Berlin bisher weder ein Leitbild noch konkrete Ziele als Benchmark vor.

In § 12 Energiewendegesetz wird zur Klimaanpassung folgende Aufgabe formuliert:

„Der Senat von Berlin wird Maßnahmen zur Anpassung an den Klimawandel und seiner unvermeidbaren Folgen für Berlin unterstützen. Er ist verpflichtet, auf der Grundlage eines aktuell zu haltenden Kenntnisstandes über den Klimawandel und der Abschätzung seiner konkreten Auswirkungen auf das Land Berlin für das Programm nach § 4 Absatz 1 Strategien und Maßnahmen zu entwickeln, die darauf abzielen, die Anpassungsfähigkeit natürlicher, gesellschaftlicher und ökonomischer Systeme zu verbessern und die Funktion der städtischen Infrastrukturen sowie die urbane Lebensqualität zu erhalten.“

Mit dem hier vorgelegten Konzept werden der aktuelle Kenntnisstand über den Klimawandel und seine konkreten Auswirkungen auf das Land Berlin beschrieben sowie Strategien und Maßnahmen entwickelt, um die Anpassungsfähigkeit der Stadt zu verbessern.

Dieser Katalog stellt ein Angebot dar, wie die Risiken und Schäden für die Stadt und ihre Infrastrukturen sowie mögliche Beeinträchtigungen von urbanen Lebensqualitäten vermieden oder zumindest gemindert werden können.

10 Anhang

10.1 Maßnahmenblätter

Alle in den vorherigen Kapiteln entwickelten Maßnahmenvorschläge werden im Folgenden in einem einheitlichen „Maßnahmenblatt“, gebündelt nach den jeweiligen Handlungsfeldern (10.1.1 – 10.1.9), näher ausgeführt.

10.1.1 Maßnahmenblätter Menschliche Gesundheit, Bevölkerungsschutz

MGBS-1

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung

Nebeneffekte

Größeres Gefahrenbewusstsein wirkt sich allgemein positiv aus, beispielsweise durch eine Reduzierung von Unfallzahlen. Es kann außerdem Investitionen in Anpassungsmaßnahmen anstoßen (z.B. Sonnenschutz oder Begrünung von Gebäuden).

Notwendige Schritte/Fristigkeit

- Bestandsaufnahme bestehender Frühwarnsysteme und ihrer Verwendung
- Gegebenenfalls Ausbau bestehender Systeme oder Aufbau eines neuen Systems
- Öffentlichkeitsarbeit (allgemeine Öffentlichkeitsarbeit und gezielt über Verbände von Gesundheitsdiensten und -berufen) zur Bekanntmachung und zur weiteren Verbreitung der Nutzung dieser Dienste
 Kurz- bis mittelfristig

Akteure

Gesundheitsverwaltung, Feuerwehr, Katastrophenschutz, Land Berlin

Finanzierung

Aus Mitteln zur Gesundheitsförderung, eventuell Beitrag der Krankenkassen

- Mittelbedarf gering bis mittel
Konflikte/ Synergien mit Klimaschutz

<table>
<thead>
<tr>
<th>Konflikte/ Synergien mit Klimaschutz</th>
<th>Keine</th>
</tr>
</thead>
</table>

Kommentare

Hoch prioritäre Maßnahme, da damit hohe Schutzgüter geschützt werden können (Gesundheit und Leben), zudem sehr gutes Nutzen-Kosten-Verhältnis.

Literatur:

MGBS-2

STEIGERUNG DER KÖRPERLICHEN FITNESS

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung

Durch bessere körperliche Fitness können Gesundheitsschäden und frühzeitigen Todesfällen vorgebeugt werden. Die Fallzahlen reduzieren sich deutlich.

Nebeneffekte

Positive Umwelt- und Ressourceneffekte bei verstärker Nutzung von Fahrrädern und Fußwegen (Verringerung des Energieeinsatzes, Verbesserung der städtischen Luftqualität).

Notwendige Schritte/ Fristigkeit

- Bestandsaufnahme bestehender Defizite in der körperlichen Fitness der Berliner/-innen
- Bestehende Potenziale und Defizite in der Förderung des Breitensportes und Fußgänger- und Fahrradverkehrs in der Stadt identifizieren
- Sportstätten und Schwimmbäder weiter fördern und ausbauen
- Fußgänger- und Fahrradverkehrinfrastruktur weiter verbessern
- ÖPNV-Angebot ins Umland ausbauen (u.a. Fahrradmitnahmemöglichkeiten verbessern)
- Mittel- langfristig

Akteure

Die Land Berlin, Gesundheitsämter der Bezirke, Berliner Bäderbetriebe, Sportvereine, Schulen, Kitas, als Multiplikatoren: Wohnungswirtschaft
Finanzierung

(Mittelbedarf/ Fördermöglichkeiten)

Aus Mitteln zur Gesundheitsförderung, eventuell Beitrag der Krankenkassen

Mittelbedarf individuelle Gesundheitsförderung vergleichsweise gering, Ausbau von Sport-, Fahrrad- und Fußwege-Infrastrukturen höhere langfristige Investitionen, die aber ein sehr gutes Nutzen-Kosten-Verhältnis aufweisen

Konflikte/ Synergien mit Klimaschutz

Positive Klimaschutzeffekte durch verstärkte Nutzung von Fahrrädern und Fußwegen (verstärkte Nutzung des Umweltverbundes im Verkehr).

Kommentare

Hoch prioritäre Maßnahme, da damit hohe Schutzgüter geschützt werden können (Gesundheit und Leben), zudem sehr gutes Nutzen-Kosten-Verhältnis in erweiterter Betrachtung.

Literatur:

ANPASSUNG DER MEDIKATION UND BERATUNG

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Für alle diese Risikogruppen muss die Medikation unter Hitzebelastungen unter ärztlicher Aufsicht/ Beratung angepasst werden. Arzt/-innen, Apotheker/-innen und Pfleger/-innen müssen Patient/-innen und Betreute darüber informieren und entsprechende Hinweise zu Mehr- oder Mindereinnahmen von Medikamenten, erhöhtem Flüssigkeitsbedarf oder entsprechenden Nebenwirkungen geben.

Wirkung

Durch bessere Information der Patient/innen können Gesundheitsschäden vorgebeugt werden.

Nebeneffekte

Verringerte Gesundheitskosten.

Notwendige Schritte/ Fristigkeit

- Bestandsaufnahme und Distribution des Wissens zum Einfluss von Hitze auf die Wirkung von Medikamenten
- Information und Fortbildungen für Ärzt/-innen und Apotheker/-innen
- Mittel- bis langfristig

Akteure

Berufsverbände der Ärzt/-innen und Apotheker/-innen, Pharmaindustrie, Krankenkassen, Gesundheitsverwaltung (SenGeSoz, LAGeSo, Bezirksämter)

Finanzierung

(Mittelbedarf)

Aus Mitteln der Pharmaindustrie, Krankenkassen, Berufsverbände

Mittelbedarf vergleichsweise gering
Für eine materielle Unterstützung kann der Arbeitgeber erhebliche Schadenskurzfristen (z.B. bei der Rettungsdienst-Akademie der Berliner Feuerwehr, BFRA) und verbesserte Fahrzeugflotte der Feuerwehr genutzt werden. Ein weiteres Beispiel für die Anpassung von Maßnahmen ist die Überprüfung der Stabilität und der Ausstattung von Rettungswagen, die bei Klimawandel und Extremwetterereignissen eine zentrale Rolle spielen kann.

Notwendige Schritte/ Fristigkeit

- Workshops/ Runde Tische zur Sondierung der Ausgangslage und zur Präzisierung des Handlungsbedarfs mit Feuerwehr, Hilfs- und Rettungsdiensten
- Detaillierte Bestandsaufnahme bestehender Ausstattung der Rettungsdienste und des Katastrophenschutzes mit Blick auf zu quantifizierende Änderungen potenzieller Schadenslagen
- Einrichtung einer organisationsübergreifenden Arbeitsgruppe zur Präzisierung des Ausbau- und Abstimmungsbedarfs (gestaffelt nach Planungshorizonten)
- Initiierung eines organisationsinternen Prozesses zur Spezifizierung einer genauer Maßnahmenplanung und ihres Mittelbedarfs; Diskussion dieser Planungen/ Bedarfe durch die AG und die Trägereinrichtungen/ Aufsichtsbehörden
- Kurz- bis mittelfristig (Bestandsaufnahme/ Planung), mittel- bis langfristig (Umsetzung)

Akteure

Land Berlin, Berliner Feuerwehr, Katastrophenschutzdienst, Hilfs- und Rettungsorganisationen, Trägereinrichtungen, Berliner Wasserbetriebe, Energiewirtschaft

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Kostenteilung (für Inneres und Gesundheit zuständige Senatsverwaltungen), Trägereinrichtungen, ggf. Krankenkassen
Mittelbedarf: voraussichtlich mittel

Konflikte/ Synergien mit Klimaschutz

Keine

Kommentare

Hoch prioritäre Maßnahme, da hohe Verwundbarkeit gegeben und sich Sachwerte, Leben/ Gesundheit und städtische Infrastrukturen dadurch besser schützen lassen; daher sehr gutes Nutzen-Kosten-Verhältnis in erweiterter Betrachtung

MGBS-5 SCHWERPUNKTPROGRAMM KLIMAANPASSTUNG (ALTEN-)PFLEGE

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Mittelfristig sollten die Leistungskomplexe zur Vereinbarung gem. § 89 SGB XI über die Vergütung ambulanter Pflegeleistungen angepasst werden (Vgl. https://www.berlin.de/sen/soziales/_assets/vertraege/pflegeeinrichtungen/ambulante-pflege/mdb__bersicht_leistungskomplexe.pdf; Zu-
10.1 Maßnahmenblätter

| Wirkung | Durch bessere personelle Ausstattung der Pflegeeinrichtungen und verbesserten Kenntnisstand der Pflegekräfte und effektive organisationale Anpassungen können gesundheitsgefährdende und lebensbedrohliche Situationen durch Hitzeereignisse für Pflegebedürftige in deutlich höherem Maße vermieden werden. |
| Notwendige Schritte/ Fristigkeit | - Bestandsaufnahme bestehender Defizite in der personellen/ organisationalen/ baulichen und medizinischen Ausstattung im Hinblick auf die Gefahren durch den Klimawandel
- (Fort-) Entwicklung von Pflegeleitlinien
- Fortbildung der Pflegekräfte im Hinblick auf die Gefahren durch den Klimawandel
- Aufstockung der Personalausstattung der Pflegeeinrichtungen
- Anpassung der Standards (Ergänzung der Prüfrichtlinien der Berliner Heimaufsicht, Ergänzung der Leistungskomplexe für die Vergütung ambulanter Pflegeleistungen)
Angesichts der Schäden für die menschliche Gesundheit sind die Maßnahmen kurzfristig zu ergreifen; sie sind mittel- bis langfristig, insbes. mit Blick auf den mittel- bis langfristigen demografischen Wandel in Berlin, anzupassen. |
| Akteure | Land Berlin, LAGeSo, Pflegeeinrichtungen, Gesundheitsämter der Bezirke, Krankenkassen und Pflegeversicherungsträger, weitere Akteure im Gesundheitssystem (Arztpraxen, Apotheken) |
| Finanzierung (Mittelbedarf/ Fördermöglichkeiten) | Aus Mitteln Krankenkassen und Pflegeversicherung; Investitionen der Träger von Pflegeeinrichtungen; Leitfaden-Update: für Gesundheit/ Soziales zuständige Senatsverwaltung
Kostenintensive Maßnahme hinsichtl. Personal/ Investitionen; wenig kostenintensiv hinsichtlich Anpassung von Standards |
| Konflikte/ Synergien mit Klimaschutz | Keine |
| Kommentare | Wichtige Maßnahme, da damit hohe Schutzgüter geschützt werden können (Gesundheit und Leben), daher sehr gutes Nutzen-Kosten-Verhältnis in erweiterter Betrachtung.
Literatur:
<table>
<thead>
<tr>
<th>MGBS-6</th>
<th>SCHWERPUNKTPROGRAMM KLIMAANPASSUNG IM GESUNDHEITSSEKTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Wirkung</td>
<td>Durch eine Verbesserung des Kenntnisstandes von Ärzt/-innen und Krankenhauspersonal können Gesundheitsgefährdungen besser und frühzeitiger erkannt und Gesundheitsschäden und Todesfälle damit besser vermieden werden. Die Fallzahlen reduzieren sich deutlich.</td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>Das Wissen über die mit dem Klimawandel verbundenen Gefahren für die Stadtbevölkerung verbreitet sich auch über die Fachkreise hinaus in die Stadtgesellschaft (Beschäftigte im Gesundheitssektor als Multiplikator/-innen).</td>
</tr>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>Fachdiskussion der Erfahrungen im Projekt „Klimaanpassungsschule“ mit Klinikleitungen (medizinisch, organisatorisch) mit dem Ziel der Anpassung an die Gegebenheiten im Stadtgebiet (kurzfristig)</td>
</tr>
<tr>
<td></td>
<td>Ausbau der Fortbildungsangebote für Ärzt/-innen und Krankenhauspersonal zu den Folgen des Klimawandels bzw. der Wetterextreme und insbesondere von Hitzereignissen auf verschiedene Krankheitsbilder (mittelfristig)</td>
</tr>
<tr>
<td></td>
<td>Erarbeitung von Leitlinien „klimaangepasstes Krankenhaus“ und Umsetzung auf baulicher, organisatorischer und medizinischer Ebene (langfristig)</td>
</tr>
<tr>
<td>Akteure</td>
<td>Land Berlin (für Gesundheit zuständige Senatsverwaltung), Krankenhäuser, ärztliche Berufsverbände, medizinisch Fakultäten und Berufsausbildungsstätten für medizinische Berufe</td>
</tr>
<tr>
<td>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</td>
<td>Fachdiskussion aus Mitteln der für Gesundheit zuständigen Senatsverwaltung</td>
</tr>
<tr>
<td></td>
<td>Aus Mitteln der Träger der Krankenhäuser, medizinische Berufsverbände, Universitäten und Berufsausbildungsstätten</td>
</tr>
<tr>
<td></td>
<td>Mittelbedarf für kurz- und mittelfristige Maßnahmen vergleichsweise gering, da als neuer Inhalt in bestehende Aus- und Fortbildungsprogramme zu integrieren; Mittelbedarf für Klimaanpassung Krankenhäuser mittel</td>
</tr>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>Keine</td>
</tr>
<tr>
<td>Kommentare</td>
<td>Prioritäre Maßnahme, da damit hohe Schutzgüter geschützt werden können (Gesundheit und Leben), sehr gutes Nutzen-Kosten-Verhältnis</td>
</tr>
</tbody>
</table>
GBS-7

SICHERSTELLEN EINER AUSREICHDEN TRINKWASSERVERSORGUNG

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
</tr>
</tbody>
</table>

Maßnahmenbeschreibung

Im öffentlichen Raum generell, aber auch in speziellen Kontexten – z.B. bei hitzebelasteten Großveranstaltungen im Freien (Sport, Kultur und Politik) - sollten vermehrt kostenlose Trinkwasserangebote (beispielsweise durch Trinkbrunnen) zur Verfügung gestellt werden.

Der zusätzliche Finanzbedarf kann durch Ausweitung der aktuellen Kampagne „Brunnen Run“, aber auch durch Sponsoring erfolgen. BWB und Service in the City müssen hierfür Konzepte entwickeln und sollten dafür Sorge tragen, dass auch privat gesponserte Brunnen gestalterisch als Berliner Trinkbrunnen sichtbar und erhalten bleiben. Schulen, Eltern und die Schulverwaltung können als Sponsoren der Schultrinkbrunnen fungieren.

Wirkung

Durch den Ausbau kostenloser Trinkwasserangebote im öffentlichen Raum wird mangelnder Wasseraufnahme in Hitze situationen besser vorgebeugt.

Nebeneffekte

Eine Studie des Dortmunder Forschungsinstituts für Kinderernährung (FKE) zeigt, dass Grundschüler/-innen seltener übergewichtig werden, wenn in der Schule ein Wasserspender vorhanden ist und das Lehrpersonal regelmäßig Wasser trinken fördert ([Muckelbauer et al. 2009](#)).

Notwendige Schritte*/*Fristigkeit

- Bestandsaufnahme von hoch frequentierten Gebieten im Stadtraum mit in der Vergangenheit überdurchschnittlich häufig aufgetretenen Fällen von Dehydrierung und/oder Kreislaufproblemen durch Hitze
- Erfassung weiterer potenzieller Standorte für öffentliche Trinkwasserbrunnen (z.B. Schulen, Spielplätze, Sportanlagen, Parks, hoch frequentierte öffentliche Plätze) und Erfassung weiterer potenzieller Standorte auf Flächen und in Gebäuden in Privateigentum mit öffentlichem Publikumsverkehr (z.B. Kaufhäuser, Konzertspielstätten, Clubs)
10.1 Maßnahmenblätter

- Investition in öffentlich zugängliche Trinkwasserbrunnen und mobile Angebote von Trinkwasser bei Veranstaltungen
- Entwicklung neuer Sponsoringmodelle
- Kurz- bis mittelfristig (2025)

Akteure
Berliner Wasserbetriebe (BWB), Service in the City, Bezirksverwaltungen, Land Berlin (Gesundheitsverwaltung), Sportvereine, Schulen, Kaufhäuser, Konzertveranstalter, Clubbetreiber

Finanzierung (Mittelbedarf/Fördermöglichkeiten)
Aus Mitteln der Berliner Wasserbetriebe, der Gesundheitsförderung, private Sponsoringmittel
Mittelbedarf vergleichsweise gering

Konflikte/Synergien mit Klimaschutz
Leichte Synergien, da Verminderung des Energie- und Ressourceneinsatzes für die Herstellung und den Transport von Mineralwasserflaschen

Kommentare
Nutzenstiftende Maßnahme, da damit hohe Schutzgüter geschützt werden können (Gesundheit und Leben), gutes Nutzen-Kosten-Verhältnis aus Sicht der Stadtgesellschaft. Privatwirtschaftlich (für Wasserbetriebe und Gewerbetreibende) nicht lohnend, daher besteht voraussichtlich Förderbedarf durch öffentlich Budgets.

Literatur:

<table>
<thead>
<tr>
<th>MGBS-8</th>
<th>ANPASSUNG/ VERBESSERUNG DES ARBEITSSCHUTZES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
</tbody>
</table>

Maßnahmenbeschreibung

Wirkung
Durch Senkung der körperlichen und gesundheitlichen Belastung durch Hitze am Arbeitsplatz wird die Gesundheit und Leistungsfähigkeit der Beschäftigten besser erhalten. Die Arbeitsproduktivität wird damit auch im Fall von Hitzeereignissen weniger stark vermindert als ohne Anpassungsmaßnahmen.
Nebeneffekte

Notwendige Schritte/ Fristigkeit
- Bestandsaufnahme der Belastungssituation am Arbeitsplatz für verschiedene Berufsfelder und individuellen Gebäudesituationen (kurzfristig)
- Aufklärung und Fortbildungsmaßnahmen zur Sensibilisierung gegenüber den Gesundheitsgefahren und Leistungsbeeinträchtigungen durch Hitze (kurzfristig/ mittelfristig)
- Investition in zusätzlichen Sonnen- und Wärmeschutz; Verbesserung des Hitzeschutzes im Zuge von Modernisierungs- oder Instandhaltungsmaßnahmen an den Gebäuden (mittelfristig)
- Integration von Klimaanpassungswissen in rechtliche Regelungen zum Arbeitsschutz, in Berufsausbildung und Fortbildungen (mittel-/ langfristig)

Akteure
IHK, Arbeitgeberverbände, Gewerkschaften, Berufsgenossenschaften, Universitäten und Berufsausbildungseinrichtungen, Geschäftsführungen und Gebäudemanagement in den einzelnen Betrieben; Land Berlin (für Gesundheit zuständige Senatsverwaltung) als initiierende Verwaltung (Anregung Bestandsaufnahme; Partner hierfür: IHK).

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
Aus Mitteln der Arbeitgeber

- Mittelbedarf kurz- und mittelfristig gering, auch privatwirtschaftlich lohnend, da Produktivität erhöht

Konflikte/ Synergien mit Klimaschutz
Synergien mit dem Klimaschutz, da technische (strombasierte) Klimatisierung dadurch in vielen Fällen zu vermeiden ist.

Kommentare
Wichtige und auch privatwirtschaftlich lohnende Maßnahme, da damit neben den Schutzgütern Gesundheit und Leben auch die Arbeitsproduktivität erhöht und die Kosten des Energieeinsatzes für Klimatisierung im Sommer und Wärme im Winter reduziert werden können.

Literatur:
MGBS-9

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung

Nebeneffekte

Notwendige Schritte/ Fristigkeit

- Sondierungsphase: Prüfung der Rechtslage, der Änderungsmöglichkeiten, Klärung des Handlungsbedarfs (Umfragen)
- Testphase: Modellvorhaben zur Verlängerung und Flexibilisierung von Öffnungszeiten (branchen spezifisch, nach Quartieren)
- Umsetzungsphase durch Tarifparteien berlinweit
- Ggf. Beteiligungsverfahren zum Interessenausgleich zwischen Gewerbetreibenden und Anwohnern
- Sondierungsphase: kurzfristig; Testphase: mittelfristig; Umsetzungsphase: langfristig

Akteure

Gewerbetreibende, Gewerkschaften, Anwohner, Land Berlin (für Wirtschaft zuständige Senatsverwaltung), Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit (LA-GetSi), IHK, Bezirke

Finanzierung

Mittelbedarf vergleichsweise gering, da sich hierbei weniger um Investitionen als um eine Veränderung der Rahmensetzung geht.

Konflikte/ Synergien mit Klimaschutz

Synergien, da Last- und Verkehrsspitzen geglättet werden können.

Literatur:

Maßnahmenblätter

HITZEANGEPASSTE SPEISE- UND GETRÄNKEANGEBOTE IN KANTINEN UND GASTSTÄTTEN

Relevante Klimaänderung

- **Temperatur**
- **Niederschlag**
- **Wind**
- **Übergreifend**

Maßnahmenbeschreibung

Die informatorische Komponente der Maßnahme zielt darauf ab, der allgemeinen Bevölkerung den Vorteilhaftigkeit (im Übrigen auch: Kostenersparnis) einer an Hitzeperioden angepassten leichten Ernährung deutlich zu machen. Außerdem sollen die Gaststätten und Kantinen dazu angeregt werden, entsprechende Speise- und Getränkeangebote zu machen.

Wirkung

Nebeneffekte

Allgemein positive Gesundheitswirkungen einer leichten Ernährungsweise.

Notwendige Schritte/Fristigkeit

- Intensivierung der Information und gezielte Kontrolle von Kühlketten im Lebensmittel- und Gastronomiebereich
- Öffentlichkeitsarbeit zur Aufklärung zur Gesundheitsgefährdung durch Unterbrechung der Kühlkette im privaten Bereich (Einkäufe, Grillpartys)
- Kampagne „Berlin ist klimaangepasst“ (o.ä.) (evtl. kombinieren mit BEK-Maßnahmen im Handlungsfeld Private Haushalte/Konsum)
- Runder Tisch „Klimaanpassung im Gastronomiebereich“
- Kurz- bis mittelfristig

Akteure

Für die regulatorische Komponente: Land Berlin (für Verbraucherschutz zuständige Senatsverwaltung), Bezirksämter, Verbraucherschutzorganisationen, Handelsverband Berlin-Brandenburg (HBB)

Finanzierung

Aus privaten Mitteln der Gewerbetreibenden; Runder Tisch und Kampagne: Ko-Finanzierung Wirtschaft, Land Berlin.

Mittelbedarf vergleichsweise gering, bei Kleinbetrieben (z.B. Imbissständen) möglicherweise nicht
MGBS-11

ERFASSUNG UND BEWERTUNG KLIAMBEDINGTER GESUNDHEITSRISIKEN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Die Vielzahl der Projektergebnisse von Projekten wie UCAHS zeigen, dass gezielte Forschung zu den Zusammenhängen von Klimawandel und menschlicher Gesundheit verwertbare Ergebnisse bringt und die zukünftige (Fort-) Entwicklung von Maßnahmen nachhaltig und kompetent unterstützt.

Wirkung

Nebeneffekte

Notwendige Schritte/ Fristigkeit

- Forschung zur klimabedingten Verschiebung der Lebensräume bzw. Verbreitungsgebiete potenziell krankheitstragender Vektoren
- Aufklärung und Fortbildung von Ärzt/-innen und Apotheker/-innen über für die Region Berlin neuartige Krankheitsbilder, um Fehldiagnosen und -medikamenten-tierungen zu vermeiden
- Vernetzung und Austausch mit Forschergruppen und Medizinern in Deutschland und international
- Öffentlichkeitsarbeit zur Aufklärung über neuartige Gesundheitsgefährdungen durch vektorübertragene Krankheiten
- Mittel- bis langfristig

Akteure

Land Berlin (Gesundheitsverwaltung), Universitäten, Kliniken, Berufsverbände der Ärzt/-innen und Apotheker/-innen, pharmazeutische Industrie, gegebenenfalls Umwelt- und Grünflächenämter
<table>
<thead>
<tr>
<th>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</th>
<th>Aus Mitteln zur Gesundheitsförderung, eventuell Beitrag der Krankenkassen, öffentliche Forschungsmittel (auch Bundesmittel)</th>
<th>Mittelbedarf für Aufklärung vergleichsweise gering, Forschungsbedarf nicht unerheblich, finanzierbar über öffentliche Fördermittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>Keine</td>
<td></td>
</tr>
</tbody>
</table>

BERÜCKSICHTIGUNG VON ALLERGIEFOLGEN BEI DER LANDSCHAFTSPLANUNG

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>
ist für diese Problematik und ihre Verantwortung dabei zu sensibilisieren, und es sollte nach praktikablen und kostengünstigen Lösungen dafür gesucht werden.

| Wirkung | Durch frühzeitiges Erkennen und Bekämpfen der Ausbreitung von Pflanzen mit hohem Allergiepotenzial können die Gesundheitsgefahren für die Bevölkerung reduziert werden. |
| Notwendige Schritte/Fristigkeit | - Wissensstand zum Gefährdungspotenzial bestimmter Pflanzenarten muss gestärkt werden – bei Grünflächenämtern, Bürgern und Unternehmen mit Grün- und Brachflächen auf dem Firmenlande (kurz-/ mittelfristig)
- Negativlisten für die Verwendung bestimmter Pflanzenarten sollten für Grünflächenämter erstellt, aber auch öffentlich gemacht werden, um dieses Wissen bei allen Bürgern zu stärken, die mit der Anlage und Pflege von Grünflächen befasst oder dafür verantwortlich sind (kurzfristig)
- Aufnahme des Kriteriums Allergieminderung in Berliner Standards für Baumpflanzung und –pflege sowie in die Aktion Stadtbaume für Berlin (kurzfristig)
- Öffentlichkeitsarbeit zur Aufklärung über gesundheitsgefährdende Pflanzenarten (kurz-/ mittelfristig)
- Verstärkte öffentliche Förderung des Berliner Aktionsprogramms gegen Ambrosia (kurzfristig)
- Runder Tisch „Stop Ambrosia“ mit der Baubranche (kurzfristig) |
| Akteure | Land Berlin (Gesundheits- und Umweltverwaltungen), Grünflächenämter der Bezirke, Umweltämter, Bausektor, Wissenschaft, Umweltverbände, Bezirke, Schulen |
| Finanzierung | Aus Mitteln zur gesundheitlichen Aufklärung, der Grünflächenpflege (ggf. aufstocken) |
| Konflikte/Synergien | Keine |
SICHERUNG DER KLIMATISCHEN ENTLASTUNGSRÄUME

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Großräumige, gut wasserversorgte und durch flache Vegetation geprägte Freiflächen wie Wiesen, Felder, Kleingartenanlagen und Parklandschaften sind Quellen für Kalt- und Frischluft und sollen hinsichtlich ihrer Entlastungsfunktion für die innerstädtischen aufgewärmten Stadtgebiete gesichert werden. Folgende Maßnahmen sind dabei von Bedeutung:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Beschränkung der Bebauung und Versiegelung,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Im Falle von Flächenverlusten: Optimierung von Landschaftsräumen durch Erhöhung des Wasseranteils in der Landschaft, Anreicherung des Grünvolumens, Pflanzung von Gehölzen, Waldumbau von Kiefernreinbestand zum Mischwald usw.,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Freihaltung von Frischluftschneisen, Vermeidung und Rückbau von Barrieren,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Bessere Vernetzung bestehender Gebiete; Sicherung und Entwicklung von kleinteiligen Luftleitbahnen zwischen den übergeordneten Frischluftschneisen und den dichten Siedlungsgebieten,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transparente, offene Gestaltung der Ränder der Kaltluftentstehungsgebiete, so dass ein Austrausch stattfinden kann.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirkung</td>
<td>Die hoch verdichteten, klimatisch belasteten Stadtgebiete werden entlastet. Bei Sicherung der Luftaustauschprozesse kann die dichte Stadt anteilig von Belastungen entkoppelt werden.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>Das Landschaftsbild und die Erholungsfunktion der Landschaft werden verbessert. Die Biodiversität wird erhöht, die Resilienz der Landschaft (z.B. Stabilität der Wälder) wird gesteigert.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notwendige Schritte/Fristigkeit</td>
<td>- Sicherung der großräumigen Entlastungsräume und Frischluftschneisen im Rahmen übergeordneter Planungen (Flächennutzungsplan, Landschaftsprogramm, Stadtentwicklungsplanung, bezirkliche Landschaftspläne)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Förderung von Maßnahmen des Waldumbaus (Forsteinrichtung), der Gehölzanreicherung in der Landschaft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Entwicklung von Konzept zur Schaffung von feuchten Landschaften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sicherung und Optimierung der Luftaustauschprozess auf der lokalen Ebene im Rahmen der Bauleitplanung und Grünflächenpflege</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kurzfristige Sicherung und langfristige Umsetzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akteure</td>
<td>- Land Berlin (Stadtentwicklung; FNP, LAPRO, Stadtentwicklungsplanung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Bezirksämter (B-Pläne, Landschaftspläne, Grünflächenpflege)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Berliner Forsten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finanzierung (Mittelbedarf/Fördermöglichkeiten)</td>
<td>In Abhängigkeit des Maßnahmenumfangs: Erhalt der Ausgleichsräume und Frischluftschneisen ohne Kosten; aktive Entwicklung (Rückbau von Barrieren, aktive Gestaltung der Kühlräume wie Waldumbau, Anlage von Wetlands, Fluranreicherung) abhängig vom Maßnahmenumfang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konflikte/Synergien mit Klimaschutz</td>
<td>Synergien: Durch Förderung von mehr Wasser in der Landschaft, Waldumbau, kann ein positiver Beitrag zur Speicherung von CO₂ in Boden und Pflanzenmasse erreicht werden; Konflikte: Begrenzung potenzieller neuer Bauflächen in der wachsenden Stadt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literatur:

GSGF-2

SCHAFFUNG VON FÜR DEN KLIWANDEL QUALIFIZIERTER ÖFFENTLICH GRÜN- UND FREIFLÄCHEN SOWIE STRAßENRÄUME UND PLÄTZE – WOHLFÜHLORTE

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klimatisch qualifizierte Grünflächen (insbesondere Parks, Spielplätze) sind eine zentrale Stellschraube der klimangepassten Stadt. Sie können kührend auf die umgebende Stadtstruktur wirken und Rückzugsorte aus der Urban Heat Island sein. Maßnahmen zur Neuschaffung dieser Grünflächen sind:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Klimatisch optimal ist die Entwicklung eines Netzes an Grünflächen von einer Mindestgröße von 1 bis 2 ha in einem Abstand von 400 m bis 600 m (Kühlwirkung einer Grünfläche bis zu ca. 300 m Reichweite). Dieses generelle langfristige Ziel der Klimaanpassung ist in seinen genauen Dimensionierungen ortsbezogen zu überprüfen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- In hoch verdichteten Stadtquartieren ist die Sicherung und Anlage von kleinen grünen ‘Wohlfühlräumen’ (Pocketparks, Entspannungsräumen) auch als Beitrag zur Steigerung der Aufenthaltsqualität des öffentlichen Raums sowie zu Umweltgerechtigkeit zu sehen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Schaffung von zusätzlichen Schattenbereichen auf Stadtplätzen, Parkplätzen, Spielplätzen, Sportflächen als Rückzugsraum - im Rahmen von Neuplanungen und Sanierungsmaßnahmen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Entseiegelung und Begrünung von Gleistrassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sicherung des Straßenbaumbestandes und Pflanzung von Straßenbäumen bei Neubaumaßnahmen im Straßenraum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Schaffung von Rückhalteflächen (Temporäre Überstauung) zur Minderung der Risiken der urbanen Überflutung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirkung</td>
<td>Eine feinkörnige klimaoorientierte Durchgrünung, besonders der stark belasteten Bereiche der Innenstadt, sorgt für klimatischen Ausgleich und gute Erreichbarkeit von bioklimatischen Erholungsräumen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>Neuanlage von Grünflächen im Rahmen von Neubauvorhaben (Wohnungsbau, Gewerbe, Dienstleistungen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration von Wohlfühlorten in den Straßenraum im Rahmen von Umbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortführung der Kampagne Stadtbäume für Berlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurz- bis mittelfristig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Akteure | - Bezirke: Grünflächen, Straßen
- Land Berlin (Stadtentwicklung: Stadtbaumkampagne)
- Bebauungsplanverfahren: Grünflächen im Huckepack mit der baulichen Verdichtung (Bezirke) |
| Finanzierung (Mittelbedarf/ Fördermöglichkeiten) | - Bei integrativer Umsetzung in ohnehin stattfindenden Projekten: geringe Mehrkosten; Kosten für Pflege und Unterhalt: gering
- Umsetzung im „Huckepack“ baulicher Verdichtung: Umsetzung v.a. durch Private |

| GSGF-3 | SICHERUNG, QUALITÄTSSICHERUNG UND STEIGERUNG DER RESILIZNIZ DES BESTEHENDEN STADTGRÜNS (GRÜN- UND FREIFLÄCHEN, STRAßENBÄUME) |

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>
- Sicherung der vorhandenen Grünflächen durch eine nachhaltige, ausfinanzierte Pflege
- Klimatische Optimierung der Grünflächen durch eine hohe Strukturvielfalt an offenen Rasenflächen, Bäumen und einen geringen Anteil an dichten Gebüschnflächen (vgl. StEP Klima Konkret)
- Schaffung von Urban-Wetland-Bereichen - feuchten Pflanzbereichen innerhalb von Parkanlagen zur Erhöhung der Verdunstungs- und Kühlwirkung; Steigerung der Retentions-Funktion zur Überflutungsminderung (Baustein für die „Schwammstadt“)
- Bevorzugte Verwendung von standort- und klimangepassten Arten mit geringem Allergiepotenzial in Grün- und Freiflächen und im Straßenraum (Straßenbäume) zur Sicherung der Resilienz gegenüber veränderten klimatischer Bedingungen, unter Berücksichtigung der Anforderungen an die Biodiversität, Schaffung von günstigen Wuchsbedingungen, Sicherung der Wasserversorgung (u.a. durch geeignetes Bodensubstrat)
- Resilienzsteigerung der Waldflächen (Mischwaldprogramm) |
Nebeneffekte
Die Resilienzsteigerung und Qualitätssicherung sichert auch die Nebeneffekte des Grüns - Beitrag zur menschlichen Gesundheit, wirtschaftliche Leistungsfähigkeit, der Erhöhung der Lebensqualität in der Stadt und Attraktivität für ihre Besucher/-innen.

Notwendige Schritte/ Fristigkeit
- Umbau der Grünflächen im Rahmen einer Freiraumqualitätsoffensive
- Sicherung und Erhöhung der Mittel für die Pflege der Grünflächen/ Straßenbäume
- Fortführung bestehender Programme der Resilienzsteigerung (Mischwaldprogramm, Stadtbaumkampagne)
- Kurz- bis mittelfristig

Akteure
- Bezirke – Pflegebereiche Grünflächen, Straßenbäume; Wohnungswirtschaft
- Land Berlin (Stadtentwicklung): Förderung Freiraumqualitätsoffensive/ Straßenbaumkampagne

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
- Da die Pflege der öffentlichen Grünflächen bereits stark reduziert ist, bedarf es einer Aufstockung der Mittel, um Maßnahmen der Klimaanpassung in Größenordnungen zu integrieren
- Mitfinanzierung durch bestehende Förderprogramm wie z.B. Stadtbauförderung/ BENE usw.

Konflikte/ Synergien mit Klimaschutz

GSGF-4

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung
- **Dach- und Fassadenbegrünung**
- **Verschattung**
 Für einen ausreichenden Sonnenschutz ist zu sorgen. Mit Bäumen (Baumfilter) kann vor allem auf südexponierte Fassaden die Sonneneinstrahlung zusätzlich gemindert werden. Je nach baulicher Situation sind auch technische Verschattungsoptionen sinnvoll, wenn möglich kombiniert mit PV-Nutzung.
- **Rückstrahlung/ Albedo – Solar Reflectance Index**
 Durch helle Fassaden, Dächer und Materialen in der Oberflächengestaltung wird die Rückstrahlung
10.1 Maßnahmenblätter

- **Durchlüftung**
 Wenn im näheren Umfeld von ca. 200 bis 300 m Grünflächen mit klimatischer Entlastungsfunktion vorhanden sind, sollte eine Luftdurchlässigkeit der Bebauung vorgesehen werden, so dass eine Durchlüftung möglich ist und nächtliche Kühlwirkungen wirken können.

- **Verdunstungskühlung**

- **Überflutungsvorsorge**

- **Entkoppelung von der Regenwasserkanalisation**

Wirkung

Bei einer umfassenden Verwirklichung wird der Neubau weitgehend entkoppelt von negativen Wirkungen auf das Stadtclima und damit auf die Lebensqualität in der Stadt.

Nebeneffekte

- Klimaangepasste Gebäude sind resilient, das Wohnen findet in einer angenehmen Umgebung statt (Klimakomfort-Wohnen)
- Einsparung bei Regenwassergebühr

Notwendige Schritte / Fristigkeit

- Durchführung eines Klimachecks als freiwillige Selbstverpflichtung und Label für Klimaangepasste Bauten
- Festsetzungen im Rahmen der Bebauungsplanung
- Verankerung in den Richtlinien zur Städtebauförderung
- kurzfristig

Akteure

- Wohnungsunternehmen
- Land Berlin (Stadtentwicklung)

Finanzierung (Mittelbedarf / Fördermöglichkeiten)

- Im Rahmen des Wohnungsbaus
- Werden Anpassungsmaßnahmen integrativ mitgeplant und umgesetzt, können Mehrkosten gering bleiben

Konflikte / Synergien mit Klimaschutz

Synergien: Durch klimaangepasste Bauweise können erhebliche Einsparungen im Energieverbrauch erreicht werden. Ein Beitrag zur CO2 neutralen Stadt kann geschaffen werden.

der Dachflächen mit der vom BEK vorgeschlagenen Solardachstrategie kann durch die Kombination von Dachbegrünung und PV-Anlagen relativ leicht entschärft werden.

Kommentare

Literatur:

GSGF-5

<table>
<thead>
<tr>
<th>GSGF-5</th>
<th>KLIMATISCHE QUALIFIZIERUNG DER STADTOBERFLÄCHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
</tbody>
</table>

Der wichtige Punkt an dieser Stelle ist, für Planungs- und Entscheidungsprozesse eine Art „Toolbox“ einschließlich einer Checkliste zu entwickeln und in Anwendung zu bringen. Die Ansätze sollen tendenziell in effektiven Strategien (siehe diverse andere Städtebeispiele) für spezifische Teilaspekte der klimatischen Qualifizierung (z.B. Fassaden-/ Dachbegrünung etc.) münden. Die „Toolbox“ umfasst:

- Anlage von blau-grünen Dächern
- Anlage von Fassadenbegrünung (extensive bis intensive, bewässerte Begrünung)
- Verschattung von Plätzen, Straßen, Gebäude, Infrastrukturen
- Steigerung der Rückstrahlung/ Albedo – Solar Reflectance Index
- Durchlüftung, Sicherung von Luftaustauschprozessen
- Verdunstungskühlung durch urban wetlands, feuchte Böden, wasserversorgte Vegetationsflächen
- Überflutungsvorsorge durch die Anlage von ‚blauen‘ Dächern, Retentionsmulden, Gefällesprägung, temporäre Überstauung von Freiflächen, Notwasserwege usw.
- Begrenzung des Versiegelungsgrades, Entsiegelung
- Entkoppelung der Oberfläche von der Regenwasserkanalisation
- Schaffung von Wohlfühlräumen (siehe hierzu StEP Klima KONKRET)

Wirkung

Nebeneffekte

Die klimatische Qualifizierung der Stadtoberfläche und damit des städtischen Raums wirkt sich positiv auf die menschliche Gesundheit und Lebensqualität aus. Die Begegnung von Mischwasserüberläufen und urbanen Überflutungen sind auch im Handlungs-
10.1 Maßnahmenblätter

feld Wasserhaushalt und Wasserwirtschaft Schwerpunkte.

Notwendige Schritte / Fristigkeit
- Im 1. Schritt Informationsverbreitung, Durchführung von Modellprojekten zur Erprobung der Prozesse, Implementation in Richtlinien des Bauens und Förderprogramm
- Parallel: Gutachten zur Analyse von Potenzialen und Fördermöglichkeiten von Dach-, Hof- und Fassadenbegrünung; mittelfristig: Entwicklung systematischer Förderstrategie
 Kurzfristig starten, langfristig umsetzen

Akteure
Umfassend: Land Berlin, Bezirke, Wohnungsunternehmen, Private Immobilienbesitzer, Ver- und Entsorgungsunternehmen mit ihren Standorten

Finanzierung (Mittelbedarf / Fördermöglichkeiten)
Durchführung der Maßnahmen im „Huckepack“ von anderen Maßnahmen der Stadtentwicklung, des Stadtumbaus, der Sanierung und des Neubaus („No-Regret-Maßnahmen“), Aufnahme in die Förderprogramme des Landes
Fördermöglichkeiten der KfW-Bank nutzen (z.B. bei der Kombination von Dachbegrünung mit PV bzw. Wärmedämmung / PV)

Konflikte / Synergien mit Klimaschutz
Abfederung von Verdichtungsprozessen, die tendenziell aus Klimaschutz-Sicht sinnvoll sind. Moderate positive Wirkung kühlerer Stadträume auch auf das Innenraumklima, dadurch etwas geringerer Gebäudekühlbedarf.

GSGF-6

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmen-beschreibung
Ähnlich wie beim Klimaschutz stellt auch in der Klimawandelanpassung das Quartier eine interessante Handlungsebene dar, die eine flexible Maßnahmenkombination unter Berücksichtigung vergleichbarer Randbedingungen (klimatisch, politisch) erlaubt. Die Heterogenität der Eigentümer stellt zwar ein Problem dar, aber verglichen mit der im Stadtgebiet insgesamt bleibt sie andererseits überschaubar.

Um Stadtquartiere besser an den Klimawandel anzupassen steht eine Vielzahl an Maßnahmen zur Verfügung. Wie die Einzelmaßnahmen zusammenwirken, welche Flächen für bestimmte Maßnahmen besonders geeignet sind, wie ggf. eine Arbeitsteilung Grundstücksübergreifend durchgeführt werden kann, kann auf der Grundlage eines Quartierskonzeptes entwickelt werden. Diese Maßnahme ergänzt die Maßnahme GeS-1 (Quartierskonzepte entwickeln und umsetzen) des BEK.

Notwendige Teilmaßnahmen sind:
- Aufstellung von Quartierskonzepten
- Einbindung der Akteure im Quartier
- Politischer Beschluss – Selbstbindung
- Zielvereinbarung mit Akteuren des Stadtquartiers

Es bietet sich an, diese Maßnahmen durch einen Klimamanager begleiten zu lassen (Förderzeitraum 3 bis 5 Jahre) und mit Sanierungsmaßnahmen im Quartier abzustimmen.

Wirkung
Ein Quartierskonzept führt zu einer abgestimmten Handlungsperspektive der Akteure, vernetzt Einzelaktivitäten und kann damit Synergien aktivieren.
Maßnahmen werden aufeinander abgestimmt.
Nebeneffekte

Notwendige Schritte/FRISTIGKEIT

- Ermittlung einer Flächenkulisse für Stadtquartiere mit einem besonderen Handlungsbedarf/Akteursstruktur der Klimaanpassung
- Mittelbereitstellung
- Auswahl von Projekten, Auftaktkonferenz für die Erarbeitung von Konzepten
- Festlegung des weiteren Verfahrensablaufs mit den Akteuren
- Frühzeitige Einbindung des Klimamangers
- Kurz- bis mittelfristig

Akteure

- Bezirksämter
- Private Akteure in den Quartieren (Immobilienbesitzer, Gewerbetreibende, Bewohner)
- Öffentliche Akteure und Multiplikatoren (Schulen, Kitas, SeniorenEinrichtungen, Vereine)

Finanzierung (Mittelbedarf/Fördermöglichkeiten)

- Fördermittel für Klimaschutzmanager/-in (PtJ)
- Entwicklung eines Programms „Klimaanpassungskonzepte auf Quartiersebene“/„Klimamanager“ auf Senatsebene,
- Umsetzung vieler Maßnahmen liegt bei privaten Akteuren. Hauptaufgabe Information, Beratung, Unterstützung im Umsetzungsmanagement

Konflikte/Synergien mit Klimaschutz

Quartierslösungen der Klimaanpassung sollten im Verein mit quartiersbezogenen Ansätzen des Klimaschutzes (siehe BEK) angegangen werden, um mögliche Synergien zu nutzen und Kosten zu sparen.

Kommentare

Bestehende Anpassungskonzepte auf Quartiersebene in Berlin sollten zur Evaluierung von Herausforderungen und Lösungswegen genutzt werden (siehe z.B.: KiezKlima (Kiez Klima, o.J.), Klausenerplatz Kiez (Bezirksamt Charlottenburg-Wilmersdorf, o.J.))

Literatur:

GSGF-7

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Im Vergleich zu anderen Belangen der Stadtentwicklung ist die Klimaanpassung noch eine junge Aufgabe. Mit Pilotprojekten könnten neben den bereits üblichen Maßnahmen (extensive Dachbegrünung, Fassadenbegrünung) innovative Ansätze verfolgt und Neuland betreten werden. Es geht dabei vor allem um eine umfassende Abkoppelung von der Kanalentwässerung, Urban Wetlands und Kühlräume in der Stadt, um überflutungstaugliche Straßen, Stellplatzanlagen und Grünflächen.

Mit innovativen Konzepten und Umsetzungsstrategien können neue Maßnahmen, Umsetzungsvarianten und deren Umsetzbarkeit und Zusammenwirken im „Reallabor“ überprüft werden. Die
graue Infrastruktur wird durch eine grüne ersetzt. Daher sollen Modellprojekte erprobt, ausgewertet und kommuniziert werden. Eine intensive Bauberatung, die innovative Ansätze fördert, soll begleitend erfolgen.

| Wirkung | Nach der Erprobung von innovativen Ansätzen werden diese zum Standard der klimaanangepassten Stadtentwicklung |
| Nebeneffekte | Stadtquartiere und Einzelprojekte werden klimaangepasster. |

Notwendige Schritte/ Fristigkeit
- Entwicklung eines Programms
- Sicherung der Finanzierung
- Bewerbungsverfahren mit guten Projekten
- Auswahl und weitere Umsetzung
- Kommunikation
- Kurzfristige Vorbereitung, mittelfristige Umsetzung

Akteure
- Land Berlin (Stadtentwicklung): zentrale Steuerung, Mittelbereitstellung
- Bezirke (lokale Abstimmung)
- Forschungseinrichtungen / Planungsbüros
- Akteure/Immobilienbesitzer

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
Öffentliche Hand vor allem Organisations- und Koordinationsaufgabe:
- Finanzmittel für die Aufstellung eines Programms für die Förderung von Modellprojekten
- Kommunikation und Öffentlichkeitsinformation

Konflikte/ Synergien mit Klimaschutz
keine

GSGF-8

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Klimaanpassung soll verstärkt in bestehende Prozesse und Planungen der Stadtentwicklung und Grünflächenplanung integriert werden. Vor allem „No-Regret-Maßnahmen‘ sollen gefördert werden. Mit wenig Aufwand kann somit viel erreicht werden. Ansatzpunkte sind:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | - Integration von Klimaanpassung in Planungen (formelle und informelle Planungen wie Stadtentwicklungspläne, Planwerke, Quartierskonzepte, Bauleitplanung, Instrumente der Landschaftsplanung)
| | - Integration von Klimaanpassung in Anforderungskataloge von Wettbewerben, Gutachterverfahren, Vergabeverfahren von landeseigenen Grundstücken usw.
| | - Platzierung von Klimaanpassungsmaßnahmen in Förderprogramme (z.B. Städtebauförderprogramme, Berliner Programm für Nachhaltige Entwicklung/ BENE)
| | - Prüfung der Einführung eines Resilienzfaktors in die Bauordnung nach der Methodik des Biotopeflächenfaktors (für quantifizierbare Bewertung der Anpassung) |
Die Ermittlung von Ansatzpunkten in bestehende Instrumente/ Förderung sowie die Abstimmung mit den Fachämtern, z.B. mit der Bauberatung, der Wettbewerbsabteilung SenStadtUm und Städtebauförderung soll die Einbindung und Akzeptanz fördern.

Wirkung
Durch transsektorale Verankerung in Planwerke wird Klimaanpassung verstärkt integrativ umgesetzt.

Nebeneffekte
Stadtquartiere und Einzelprojekte werden klimaangepasster.

Notwendige Schritte/ Fristigkeit
- Ermittlung von Ansatzpunkten zur Verstärkung der Klimaanpassung in bestehende Instrumente/Förderung
- Prüfung inwieweit klimatische Belastung als städtebaulicher Missstand anerkannt werden kann, um damit Gegenstand der Städtebauförderung werden zu können.
- Abstimmung mit ausführenden Fachabteilungen (z.B. Bauberatung, Wettbewerbe, Städtebauförderung)

Akteure
- Land Berlin (Stadtentwicklung)
- Bezirke (z.B. Bauberatung)

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
Durch integrative Verankerung in bestehende Planwerke und Anforderungskataloge: gering

Konflikte/ Synergien mit Klimaschutz
Keine

GSGF-9

| **ERMÖGLICHUNG DER ZUGÄNGLICHKEIT KÜHLERER RÄUME IN HITZEPERIODEN** |
|--------------------|-------|-------|------------------|
| **Relevante Klimaänderung** | **Temperatur** | Niederschlag | Wind | Übergreifend |
| **Wirkung** | Bioklimatische Entlastung der Stadtbewohner bei extremen Hitzeereignissen. |
| **Nebeneffekte** | k.A. |
| Notwendige Schritte/ Fristigkeit | - Ermittlung von kühlen Räumen
- Entwicklung einer Strategie zur Öffnung und Regelung zur Nutzung von kühlen öffentlichen Einrichtungen unter Berücksichtigung der Erreichbarkeit und Lage in besonders belasteten Gebieten
- Entwicklung einer aktuellen Informationskette zu Zeiten der in Hitzeperioden zugänglichen Räume
- Entwicklung einer Imagestrategie zur Erzeugung von Synergieeffekten für teilnehmende Verbände und Einrichtungen
- Kurzfristig bis langfristig |
| Akteure | - Berliner Bäder Betriebe
- Staatlichen Museen zu Berlin
- Land Berlin (für Bildung, Jugend und Wissenschaft zuständige Senatsverwaltung)
- Bezirksämter und weitere Akteure mit potenziellen „Kühlräumen“
- Kirchen |
| Finanzierung (Mittelbedarf/ Fördermöglichkeiten) | Unterstützung der Verbände und Einrichtungen bei Zusatzbelastung |
| Konflikte/ Synergien mit Klimaschutz | Leichte Synergien: Die Bereitstellung von kühlen öffentlichen Räumen könnte eine leicht dämpfende Wirkung auf die Nachfrage nach (privater) Gebäudekühlung besitzen |

| GSGF-10 BEGRENZUNG KONVENTIONELLER KLIMAANLAGEN |
| Relevant Klimaänderung | Temperatur |
| | Niederschlag | Wind | Übergreifend |
Hierzu ist zur Erweiterung des Erfahrungswissens auch die Förderung von mehreren Modellprojekten sinnvoll (siehe z.B. Kraft-Wärme-Kälte-Kopplung auf dem EUREF-Campus, Aktivitäten von Green-Moabit, Mierendorff-Insel etc.). |
| Nebeneffekte | Synergien ergeben sich mit folgenden Anpassungs-Maßnahmen:
- Entwicklung von Strategien zur klimatischen Entkoppelung von Neubauvorhaben (Handlungsfeld Gebäude, Stadtentwicklung & Grün- und Freiflächen) (GSGF 4)
- Verbesserung des Sommerwärmeschutzes bei gewerblichen (Neu-) Bauten, inkl. Beratung und Begleitung von Unternehmen (Handlungsfeld Industrie, Gewerbe & Finanzwirtschaft)
- Förderung energieeffizienter Kühl-Systeme in Neubau und Bestand durch Modellvorhaben, zzgl. Information und Beratung von Immobilieneigentümern (Handlungsfeld Energie- & Abfallwirtschaft)
- Verschattung, Kühlung/ Klimatisierung ohne konventionelle Klimaanlagen (Handlungsfeld Menschliche Gesundheit & Bevölkerungsschutz) |
| Notwendige Schritte/ Fristigkeit | Die folgenden Schritte sollten mittelfristig angegangen und kontinuierlich verfolgt werden:
- Rechtliche Begrenzungsmöglichkeiten untersuchen und umsetzen
- Möglichkeiten zur Sensibilisierung und Aufklärung alternativer Kühloptionen bestimmen
- Bspw. Informationsflyer, Workshops, Wissens- und Erfahrungsaustausch entwickeln, relevante Akteure identifizieren (inkl. Eigentümerstrukturen untersuchen)
- Relevante Akteure beraten und vernetzen
- Baugewerbe/Bauherren auf notwendige Umsetzung und Implementierung alternativer Kühloptionen aufmerksam machen
- Potenzialanalysen für großflächige Umsetzung alternativer Kühlmöglichkeiten durchführen und Pilotprojekte/Modellprojekte fördern |
| Akteure | Land Berlin (für Stadtentwicklung, Umwelt, Wirtschaft, Technologie und Forschung zuständige Senatsverwaltungen)
- Unternehmensverbände, IHK, Handwerkskammer, Gewerbetreibende
- Wohnungsunternehmen |
| Finanzierung (Mittelbedarf/ Fördermöglichkeiten) |
- Förderung durch öffentliche Hand, v.a. für initialen Wissens- und Erfahrungsaustausch, Informationsflyer, Workshops, etc.
- Weitere Fördermöglichkeiten, z.B. KfW-Energieeffizienzprogramm für Unternehmen (KfW 2015) |
| Konflikte/ Synergien mit Klimaschutz | Reduzierung des Gebäudekühlbedarfs und damit – abhängig vom Emissionsfaktor Strom – auch der CO₂-Bilanz des Stromsektors |
| Kommentare | Literatur:
<table>
<thead>
<tr>
<th>GSGF-11</th>
<th>VERBESSERUNG DER INFORMATION ÜBER GEBÄUDEBEZOGENE MAßNAHMEN DER KLIMAAANPASSUNG FÜR PRIVATE – SENSIBILISIERUNG FÜR PRIVATEN GEBÄUDESCHUTZ FÜR MIETER UND EIGENTÜMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
</tbody>
</table>
| Wirkung | – Reduzierung der Risiken der Überflutung
– Reduzierung der Belastung durch Hitze
– Steigerung der Lebensqualität
– Vermeidung/Minderung möglicher Schäden |
| Nebeneffekte | k.A. |
| Notwendige Schritte/ Fristigkeit | – Initiierung einer Austauschplattform z.B. „Runder Tisch- Klimaanpassung“
– Einrichten eines zentralen Registers für Informationsmaterialien
– Erstellen von Informationsbroschüren und Checklisten in Berücksichtigung des Informationsbestands kontinuierlich |
| Akteure | öffentliche Hand in Kooperation mit Immobilien- und Wohnungswirtschaft, Architektur- und Planungsbüros, Energieberater |
Finanzierung (Mittelbedarf/Fördermöglichkeiten)
Gering bis mittel, vor allem Informationsmaterialien

Konflikte/Synergien mit Klimaschutz
Informationen zur Umsetzung von gebäudebezogenen Klimaanpassungsmaßnahmen sollten die Belange des Klimaschutzes integrieren und mögliche Synergien und Konflikte sowie Lösungsmöglichkeiten aufzeigen

<table>
<thead>
<tr>
<th>GSGF-12</th>
<th>INITIERUNG EINER STADTDEBATTE ZUM PARADIGMENWECHSEL REGENWASSERMANAGEMENT ‚SCHWAMMSTADT‘</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Wirkung</td>
<td>Durch einen Diskurs zum Thema Schwammstadt können Akteure zur Umsetzung gewonnen werden und nötiges Wissen generiert werden. Durch eine breite Verankerung kann die Schwammstadt transsektoral in der Stadtentwicklung umgesetzt werden.</td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>k.A.</td>
</tr>
</tbody>
</table>
| Notwendige Schritte/Fristigkeit | - Entwicklung einer Diskussions- und Informationsstrategie
- Entwicklung unterschiedlicher Austauschformate
- Bereitstellung von Informationsmaterialien kurzfristig |
<p>| Akteure | Land Berlin (für Stadtentwicklung zuständige Senatsverwaltung in Zusammenarbeit mit Unternehmen (z.B. BWB), Verbänden, IHK, Wohnungswirtschaft, Umweltverbändern usw. |</p>
<table>
<thead>
<tr>
<th>Finanzierung (Mittelbedarf/Fördermöglichkeiten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor allem Kosten für Informationskampagne, Aufbereitung von Informationsmaterialien, Durchführung von Veranstaltungen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konflikte/Synergien mit Klimaschutz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>
10.1.3 Wasserhaushalt, Wasserwirtschaft

Maßnahmenblätter

<table>
<thead>
<tr>
<th>WW-I</th>
<th>ENTKOPPELUNG DER REGENWASSERBEWIRTSCHAFTUNG VON DEN ZENTRALEN SYSTEMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
</tbody>
</table>

Maßnahmenbeschreibung

Modellrechnungen zeigen, dass die klimawandelbedingte Zunahme von Starkniederschlägen auch durch die Schaffung von zusätzlichem Stauraum in der Kanalisation bis 2020 nicht aufgefangen werden kann. Zudem führt auch der Regenwasserabfluss vornehmlich der Trenkanalisation den Oberflächengewässern Schmutz- und Schadstofffrachten zu (ca. 69 Mio m³/a), die den Einträgen aus Schmutzwasser (ca. 192 Mio. m³/a) qualitativ vergleichbar sind (Wicke/Matzinger/Rouault 2015).

Diese Entkoppelung übersetzt sich in eine Reihe von Teilmaßnahmen:

- Bei Neubauvorhaben: Zielsetzung von abflusslosen Siedlungsgebieten, die mit Ausnahme des Hauptstrassenetzes von den Kanälen abgekoppelt sind. In der Entwurfsphase ist diese Anforderung (z.B. bei städtebaulichen Wettbewerben) frühzeitig zu berücksichtigen
- Bei Nachverdichtung in Bestandsgebieten: Entwicklung von Vorgaben für die Begrenzung der Abflussmenge (z.B. orientiert am natürlichen Abfluss)
- Unterstützung von Projekten mit 'blaugrünen Dächern' und Modellvorhaben, die Verdunstungssysteme entwickeln
- Anpassung der Bauordnung Berlin mit dem Ziel der dezentralen Bewirtschaftung als Regelaufgabe
- Umgestaltung der Abwassergebühren zur Anreizschaffung für Grundstückseigene Versickerung
- Identifikation von Teilgebieten in Berlin mit besonderer Dringlichkeit der dezentralen Regenwasserbewirtschaftung (aufgrund bereits hoher bzw. zukünftig hoher Auslastung in Folge von laufenden städtebaulichen Neubauvorhaben)
- Implementierung geeigneter Systeme der dezentralen Reinigung von Straßenabflüssen (im Anschluss an das Projekt DSWT (Dezentrale Reinigung von Straßenabflüssen) des Kompetenzzentrums Wasser
- Entwicklung einer Kampagne ‚Abkoppelung‘ incl. Förderung vergleichbar der Strategie der EMScher Genossenschaft (Wasserbetrieb in der Metropole Ruhr Region)

Baulich-technisch bietet sich eine Vielzahl an Umsetzungsmöglichkeiten an. Lösungen wie der Ausbau dezentraler Versickerungssysteme (z.B. Mulden-Rigolen) sind bereits etabliert und werden vielerorts umgesetzt. Maßnahmen wie die 'Verstärkung der Dachbegrünung (grün-blaue Dächer) sind neuere Lösungen, die besonders effektiv auch zur Kühlung der Stadt beitragen.

Im Rahmen des derzeit laufenden Mischwassersanierungsprogramms der Berliner Wasserbetriebe ist eine ‚Entkoppelung‘ von Flächen als strategische Option ebenfalls vorgesehen.

Wirkung

- Minderung der Gefahren durch urbane Überflutung
- Reduktion der Belastung der Vorfluter bei Starkregenereignissen (insbesondere in Gebieten mit Mischwasserkanalisation)
- Grundwasseranreicherung, Erhöhung der Verdunstungsleistung
10.1 Maßnahmenblätter

Nebeneffekte

Wirtschaftliche Vorteile durch langfristige Einsparung der Niederschlagswassergabühr von 1,80 € je m² versiegelter Fläche/ Jahr

Notwendige Schritte/ Fristigkeit

- Entwicklung der Kampagne „Abgekoppeltes Berlin‘ (alternativ: Resilientes Berlin‘ o.ä.)
- Ermittlung von rechtlichen Vorgaben (insbesondere Beschränkung der Abflussmengen von Grundstücken)
- Konsequente Umsetzung und Erweiterung des laufenden Mischwassersanierungsprogramms der Berliner Wasserbetriebe in Bezug auf die Abkopplung
- Kurzfristig: Schaffen neuer Rahmenbedingungen, langfristig schrittweise Umsetzung

Akteure

- Land Berlin (Stadtentwicklung)
- Berliner Wasserbetriebe
- Bezirke
- Immobilienbesitzer
- Wohnungsunternehmen

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

- Schaffung der rechtlichen Rahmenbedingungen und einer Kampagne mit geringen Kosten
- Aktive Förderung der Entkoppelung von Flächen der öffentlichen Hand verursacht erhebliche Kosten, daher Verknüpfung mit ‘Sowieso-Maßnahmen‘ bei Neubau, Umbau und Sanierung
- Durch Einsparung der Niederschlagswassergabühr längerfristig Kosteneinsparung im Betrieb

Konflikte/ Synergien mit Klimaschutz

Durch die Entlastung der zentralen Systeme kann dort auch Energie eingespart werden.

Kommentare

Literatur:

http://www.kompetenzzwasser.de/fileadmin/user_upload/pdf/forschung/OgRe/Abschlussbericht_OgRe_final_re.pdf; Zugriff: 22.02.2106.

WW-2

ÜBERFLUTUNGSTAUGLICHE GESTALTUNG DER OBERFLÄCHE DER STADT (STRAßEN, PLÄTZE, PARKS, SPORTFLÄCHEN, STELLPLÄTZE USW.)

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Die Maßnahmen der Regenwasserbewirtschaftung zielen auf einen klimaorientierten Umgang sowohl von durchschnittlich anfallenden Niederschlagsmengen als auch von Extremereignissen. Neben der Versickerung und Verdunstung von Regenwasser (WW-1) können, um eine Reduktion
10.1 Maßnahmenblätter

der extremen Abflusspeaks und Schäden an Gebäuden und empfindlichen Infrastrukturen zu vermeiden, temporär überflutungstaugliche Flächen geschaffen werden. Diese temporären Stauraum und Notwasserwege, die das anfallende Niederschlagswasser umleiten, tragen zur Vermeidung der Belastung der Gewässer und Minderung von Schäden an Gebäuden und Infrastruktur bei (PIROTH/ WEINGÄRTNER/ SCHMITT et al. 2015).

Die überflutungstaugliche Gestaltung der Oberfläche der Stadt erfordert eine ressortübergreifende Zusammenarbeit der Akteure der Wasserwirtschaft, Stadt-, Verkehrs- und Grünplanung sowie der Immobilienwirtschaft.

Die Erstellung von Risikokarten (siehe WW-11) ist eine wesentliche Grundlage, um in den Risikogebieten der Überflutung gezielt Gegenmaßnahmen einzuleiten.

<table>
<thead>
<tr>
<th>Wirkung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Vermeidung von Risiken und Schäden an Gebäuden und Infrastruktur in Folge von Starkregeneignissen</td>
<td></td>
</tr>
<tr>
<td>- Vermeidung von Belastungen der Vorflutgewässer (Einhaltung der Zielvorgaben der WRRL)</td>
<td></td>
</tr>
</tbody>
</table>

| Nebeneffekte | Kosten einsparung, da der technische Ausbau der Kanäle für die seltenen Ereignisse unverhältnismäßig groß ist. |

<table>
<thead>
<tr>
<th>Notwendige Schritte/ Fristigkeit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Ermittlung von Risikogebieten (siehe Maßnahme WW-11)</td>
<td></td>
</tr>
<tr>
<td>- Verankerung von Maßnahmen der Überflutungsvorsorge bei privaten und öffentlichen Neubauten</td>
<td></td>
</tr>
<tr>
<td>- Entwicklung von Modellprojekten von überflutungstauglichen Straßen und Grünflächen</td>
<td></td>
</tr>
</tbody>
</table>

| Akteure | Land Berlin (Stadtentwicklung), Berliner Wasserbetriebe, Bezirke (Grünflächen, Straßen- und Tiefbau), Immobilienbesitzer, Wohungsunternehmen |

<table>
<thead>
<tr>
<th>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sensibilisierung, Information, Vorbereitung und Risikokarten geringer Mittelbedarf</td>
<td></td>
</tr>
<tr>
<td>- Bei baulicher Umsetzung im Bestand in Abhängigkeit zum Umfang und Art der Maßnahme</td>
<td></td>
</tr>
<tr>
<td>- Bei Neubau ohne oder mit geringen Mehrkosten verbunden</td>
<td></td>
</tr>
</tbody>
</table>

| Konflikte/ Synergien mit Klimaschutz | Keine |

<table>
<thead>
<tr>
<th>Kommentare</th>
<th>Literatur:</th>
</tr>
</thead>
</table>
WW-3

ANPASSUNG DER ANLAGEN DER ABWASSERINFRASTRUKTUR AN STARKREGENEREIGNISSE

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wo die Entkoppelung der Regenentwässerung von den zentralen Systemen durch die Anpassung der Oberfläche (siehe WW-2) nicht möglich ist, sollte zur Vermeidung von Mischwasserüberläufen der Ausbau der Stauraumerweiterung fortgeführt werden, um unterirdische Kapazitäten zu aktivieren. Die Fortführung des derzeitigen Ausbaus der Stauraumerweiterung (laufendes Mischwassersanierungsprogramm der BWB) leistet bereits einen entsprechenden Beitrag.

Allerdings können die technischen Systeme nicht alles leisten. Für Extremereignisse sind gebäudebezogene Maßnahmen (Sicherung von Kellerschächten und Tiefgaragen, Anlage von barrierefreien, ebenerdigen Zugängen mit entsprechendem Gefälle usw.) ergänzend vorzuhalten.

Wirkung

- Vermeidung von Belastungen der Vorfluter in Folge von Starkregenereignissen
- Einhaltung der Ziele der WRRL und damit der Wassergüte der Berliner Gewässer

Nebeneffekte

Notwendige Schritte/Fristigkeit

- Identifizierung der gefährdeten Gebiete
- Entwicklung von Konzepten
- Kostenermittlung
- Finanzierungskonzept

Akteure

- Land Berlin (für Umwelt zuständige Senatsverwaltung)
- Berliner Wasserbetriebe
- Ggf. Einbeziehung von privaten Anbietern

Finanzierung (Mittelbedarf/Fördermöglichkeiten)

- Abhängig vom Umfang der Maßnahmen

Konflikte/Synergien mit Klimaschutz

Keine

Kommentare

Kommentar:
<table>
<thead>
<tr>
<th>WW-4</th>
<th>ANPASSUNG DER ANLAGEN UND DES BETRIEBS DER ABWASSERINFRASTRUKTUR AN TROCKENHEIT UND HITZEEREIGNISSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Wirkung</td>
<td>Vermeidung von Geruchsbelästigung, Sicherung von Lebensqualität in der Stadt</td>
</tr>
<tr>
<td>Nebenefekte</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| **Notwendige Schritte/Fristigkeit** | - Ausweitung und Fortführung der bestehenden Maßnahmen
- Ermittlung von besonders Belastungsgebieten
- Ermittlung weiteren Forschungsbedarfs
- Kurzfristig Ermittlung Handlungsbedarf, langfristig schrittweise Umsetzung |
| **Akteure** | - BWB
- Kompetenzzentrum Wasser
- Forschungseinrichtungen
- Land Berlin (für Umwelt und Stadtentwicklung zuständige Senatsverwaltungen) |
| **Finanzierung (Mittelbedarf/Fördermöglichkeiten)** | Mittelbedarf abhängig vom Umfang und Fristigkeit der Umsetzung der Maßnahmen |
| **Konflikte/Synergien mit Klimaschutz** | Keine |
WW-5 (TRINK)WASSERQUALITÄT SICHERN

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Durch die Sicherung der Mindestzuflüsse der Fließgewässer, den Erhalt von Wasserschutzgebieten (Qualitätssicherung, Sickerwasserzunahme durch Förderung des Waldumbaus), die Erhöhung der Grundwasseranreicherung (durch Versickerung und Vermeidung von Versiegelung) und die Fortführung der Kooperationen zwischen Berlin und Brandenburg zur Wasserqualität stadtexterner Quellen kann zur Sicherung des Wasserhaushalts und der Wasserqualität beigetragen werden.

Wirkung

Sicherstellung einer ausreichenden und qualitativ hochwertigen Trinkwasserversorgung

Nebeneffekte

Vermeidung von Beeinträchtigungen von Feuchtgebieten durch Grundwasserabsenkung

Notwendige Schritte/ Fristigkeit

- Ermittlung von Risiken
- Aufstellung eines Handlungskonzept 'Trinkwasserqualität Berlin im Klimawandel'
- Kurzfristige Vorbereitung, langfristige schrittweise Umsetzung von Maßnahmen

Akteure

- Berliner Wasserbetriebe
- Land Berlin (Umwelt)

Finanzierung (Mittelbedarf/Fördermöglichkeiten)

- In Abhängigkeit zum Maßnahmenumfang,
- Kostenermittlung nach Zusammenführung der Einzelmaßnahmen des Handlungskonzeptes

Konflikte/Synergien mit Klimaschutz

Keine

WW-6 STEIGERUNG DER KLIMATISCHEN WIRKSAMKEIT VON URBANEN GEWÄSSERN

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wasserflächen mit entsprechender Ausprägung oder Gestaltung sind wichtige klimatische Ausgleichsräume in der hitzeangepassten Stadt. Sie sind Ventilationsbahnen für Kalt- und Frischluft und fungieren als Wärmespeicher, die ihre Umgebung kühlen. Berlins Gewässer und Wasserflä-

211
Folgende Maßnahmen erhöhen die klimatische Wirksamkeit:

- Durchführung von Renaturierungsmaßnahmen an stehenden und Fließgewässern
- Anlage von wechselfeuchten, temporär überstaubaren Flächen entlang der stehenden und Fließgewässer
- Erhöhung des Anteils an vegetativen Randstreifen, Erhöhung des Röhrichtbestandes
- Anlage von kleineren Wasserflächen in Grün- und Freiflächen zur Erhöhung der Kühlwirkung (urban wetlands)
- Vermeidung von Barrieren zur Sicherung des Luftaustauschs zu umgebenden Stadtgebieten

Durch Aufweitung der Überschwemmungsgebiete und Schaffung von weiteren Retentionsräumen (z.B. Panke) sollen Schäden durch Hochwasser an den Flüssen vermieden werden.

Wirkung
Entgegenwirkung des Hitzeinseleffekt und bioklimatischer Belastungssituationen, Vermeidung von Schäden durch Überschwemmung

Nebeneffekte
Positive Auswirkungen auf die Menschliche Gesundheit

Notwendige Schritte/ Fristigkeit
Erstellung/Umsetzung Integrierter Gewässerentwicklungskonzepte

Akteure
- Land Berlin (Umwelt: Wasserbehörde)
- Bezirke
- Berliner Wasserbetriebe

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
In Abhängigkeit zum Umfang der Maßnahmen; Soweit möglich verknüpfen mit Maßnahmen, die sowieso durchgeführt werden

Konflikte/ Synergien mit Klimaschutz
Keine

Kommentare
In der Planungshinweiskarte wird die Flächenkulisse dieser Maßnahme angegeben (GEO-NET 2015: 105)

WW-7
AUSBAU DES TRINKBRUNNENNETZES BERLIN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>In Hitzeperioden ist die Deckung des steigenden Bedarfs an Flüssigkeit wichtig, um gesundheitliche Folgen zu vermeiden. Das Kaufen einer ausreichenden Menge an Getränken ist nicht für Alle und zu jeder Zeit möglich (geschlossene Geschäfte am Sonntag, teurere Getränkepreise in Cafés, Shops). Die Versorgung mit kostenfreiem Trinkwasser ist eine wirkungsvolle Maßnahme um Belastungssituationen bei Hitzeereignissen zu begegnen (vgl. MGBS-7).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wirkung</th>
<th>Vermeidung von gesundheitlichen Schäden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebeneffekte</td>
<td>Kosteneinsparung im Gesundheitswesen</td>
</tr>
<tr>
<td>Notwendige</td>
<td>– Entwicklung von Konzept, Öffentlichkeitsarbeit</td>
</tr>
<tr>
<td>Schritte/</td>
<td>– Gewinnung von Partnern der Umsetzung</td>
</tr>
<tr>
<td>Fristigkeit</td>
<td>– Kurzfristig Start, schrittweise Umsetzung</td>
</tr>
<tr>
<td>Akteure</td>
<td>– Land Berlin (Umwelt, Bildung)</td>
</tr>
<tr>
<td>– Bezirke</td>
<td>– Berliner Wasserbetriebe</td>
</tr>
<tr>
<td>– Private Institutionen mit hohem Publikumsverkehr</td>
<td>– Veranstalter von Großveranstaltungen</td>
</tr>
<tr>
<td>Finanzierung</td>
<td>Kostenermittlung auf der Grundlage eines Konzeptes</td>
</tr>
<tr>
<td>(Mittelbedarf/</td>
<td>Umsetzung durch Partner</td>
</tr>
<tr>
<td>Fördermöglichkeiten)</td>
<td></td>
</tr>
<tr>
<td>Konflikte/</td>
<td>Keine</td>
</tr>
<tr>
<td>Synergien mit</td>
<td></td>
</tr>
<tr>
<td>Klimaschutz</td>
<td></td>
</tr>
</tbody>
</table>
PROJEKT BADEN IN DER STADT

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

In Hitzeperioden ist ein erfrischendes Bad für Gesundheit und Lebensqualität in der Stadt förderlich. Schwimmbäder können aus Kostengründen nur begrenzt ausgebaut werden. Eine kostengünstigere Variante ist die Nutzung der bestehenden Gewässer zum Baden. Insbesondere in Hitzeperioden sollen die Möglichkeiten zum Baden verbessert werden:

- Durchführung von Maßnahmen zur Entwicklung und Sicherung von Badewasserqualität in der Spree und in den Kanälen durch Vermeidung von Mischwasserüberläufen und Stoffeinträgen in die Gewässer
- Erhöhung der Selbstreinigungskraft der Gewässer durch naturnahe Ufergestaltung
- Erhalt und die Aufwertung vorhandener Badestellen (siehe auch Projekt „Flusshygiene“ (Kompetenzzentrum Wasser 2016)
- Anlage von neuen Badestellen in der Stadt,
- Genehmigung des Baden in der Spree im urbanen Kontext
- Schaffung von kleineren Erfrischungsorten (Wasserspielplätze, „Planschen“ in Grün- und Parkanlagen).
- Anpassung der Öffnungszeiten von Freibädern in Hitzeperioden

Erste Pilotprojekte, wie z.B. „Flussbad“ an der Museumsinsel können die Qualität von Baden in Gewässern in der Stadt aufzeigen und so zur Gewinnung von Unterstützerkonstellationen auch für weitere Projekte beitragen.

Wirkung

Abkühlung und Förderung der Gesundheit

Nebeneffekte

Positive Effekte:

- Steigerung der Lebensqualität in der Stadt in Hitzeperioden
- Entwicklung eines positiven Image ‚Badestadt Berlin‘
- Positive Wirkung auf Tourismuswirtschaft

Notwendige Schritte/ Fristigkeit

- Aufstellung Masterplan ‚Baden in der Stadt‘
- Entwicklung Handlungskonzept mit Einzelmaßnahmen
- Schrittweise Umsetzung

Akteure

- Berliner Bäderbetriebe
- Bezirke (Wasserspielplätze, Planschen, Badestellen)
- Land Berlin (Umwelt - Wasserbehörde / Stadtentwicklung / Freiraumplanung)
- Berliner Wasserbetriebe

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Kurzfristig Mittelbereitstellung für Masterplan ‚Baden in der Stadt‘

Konflikte/ Synergien mit Klimaschutz

keine
WW-9

WASSERSENSIBLE STADTENTWICKLUNG ALS QUERSCHNITTSORIENTIERTES THEMA

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Für eine wassersensible Klimaanpassung der Stadt ist das handlungsfeldübergreifende Zusammenwirken verschiedener Akteure entscheidend. Wassersensible Stadt bedeutet neben angepasster „Grauer Infrastruktur“ (z.B. Abwasserkanäle) für die Zukunft vor allem die Umsetzung der „Grün-blauen Infrastruktur“. Das heißt die Stadtoberfläche muss vermehrt entsprechende Anpassungsaufgaben übernehmen (Retention von Starkregen, Versickerung, Verdunstung – Siehe GSGF-5 Klimatische Qualifizierung der Stadtoberfläche). Das Potenzial der Stadtoberfläche kann nur gehoben werden, wenn die zahlreichen zuständigen Ressorts der öffentlichen Hand und Private die Maßnahmen in ihrem Feld integrierend umsetzen.

Die Erstellung eines übergreifenden Anforderungskataloges für die wassersensible Stadtentwicklung, der für alles öffentlichen Maßnahmen eine Vorgabe darstellt, könnte zur einfacheren Implementierung beitragen.

Im Rahmen von Wettbewerben kann die Integration von Vorgaben bei Neubauten der öffentlichen Hand (öffentliche Gebäude, z.B. Schulen), zur Umsetzung beitragen und gute Beispiele können platziert werden.

Wirkung

Schrittweise Förderung einer klimaangepassten Stadt

Nebeneffekte

- Vermeidung von Schäden in Folge von urbanen Überflutungen
- Erhöhung der Kühlwirkung in der Stadt

Notwendige Schritte/ Fristigkeit

- Kurzfristig: Erstellung von Leitlinien der wassersensiblen Stadtentwicklung
- Kurzfristig: Erstellung eines Masterplans wassersensible Stadtentwicklung mit Handlungskonzept
- Schrittweise Umsetzung des Handlungskonzeptes

Akteure

- Berliner Wasserbetriebe
- Land Berlin (Umwelt, Stadtentwicklung)
- Bezirke

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Kurzfristig Mittelbereitstellung für Masterplan und Handlungskonzept
10.1 Maßnahmenblätter

<table>
<thead>
<tr>
<th>Konflikte/ Synergien mit Klimaschutz</th>
<th>Keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WW-10</th>
<th>INFORMATIONSBEREITSTELLUNG FÜR GEFAHRDETE STADT Gebiete (RISIKOKARTEN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Wirkung</td>
<td>Grundlage für die gezielte Durchführung von Maßnahmen zur Überflutungsvorsorge der öffentlichen Hand und von Privaten</td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>Schadenminderung</td>
</tr>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>– Erstellung einer gesamtstädtischen Risikokarte</td>
</tr>
<tr>
<td>Akteure</td>
<td>– Land Berlin (Hochwasserschutz, Wasserbehörde, Stadtplanung, Landesvermessung…) – Berliner Wasserbetriebe</td>
</tr>
</tbody>
</table>
10.1 Maßnahmenblätter

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Kurzfristig Mittelbereitstellung für Risikokarte

Konflikte/ Synergien mit Klimaschutz

Keine

Kommentare

Der Deutsche Wetterdienst (DWD) bietet seit Kurzem eine radarbasierte Niederschlagsklimatologie an, die auf der Kombination von Daten des Bodenmessnetzes (Auflösung ca. 10 km x 10 km) mit Radarmessungen (Auflösung 1 km x 1 km) basiert (vgl. BECKER 2016). Daraus lässt sich das Starkregenrisiko auch für kleinteilige Stadtgebiete nunmehr besser abschätzen, der DWD betont ausdrücklich die Bedeutung dieser Information für Stadtplanung und Katastrophenschutz (vgl. ebd.). Kombiniert mit hoch aufgelösten Informationen zur Topographie und den hydrologisch relevanten Facetten der Stadtoberfläche (Risikokarten urbaner Überflutungen) können so relativ genaue Hinweise zur Klimaanpassung und für den Katastrophenschutz gegeben werden.

Das Projekt KURAS wertet die Einsatzdaten der Berliner Feuerwehr zu pluvialen Hochwässern aus. Diese Informationen sollten in die Risikobewertung eingehen.

Literatur:

WW-11

ERFORSCHUNG DER RISIKEN UND CHANCEN DES KLIMAWANDELS FÜR DIE BERLINER WASSERBILANZ (WIRKUNG AUF WASSERVERSORGUNG/ NATURRÄUME/ OBERFLÄCHENGEWÄSSER/ BAUSUBSTANZ)

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Um steuernd im Sinne einer zukunftsorientierten Anpassung auf die Veränderungen einwirken zu können ist die Erforschung der Risiken und Chancen des Klimawandels für die Berliner Wasserbilanz (Wirkung auf Wasserversorgung/ Naturräume/ Oberflächengewässer/Bausubstanz) von großer Bedeutung.

In Verknüpfung mit laufenden Forschungsvorhaben (z.B. Projekt KURAS) kann eine Modellierung des Wasserregimes / der Grundwasserverhältnisse Berlins als Wasserzehrregion inklusive einer Wirkungsanalyse auf die verschiedenen Schutzgüter Orientierungspunkt für die weitere Ausrichtung sein.

Wirkung

Grundlage für die zukünftige Ausrichtung der Wasserwirtschaft für Berlin
<table>
<thead>
<tr>
<th>Nebeneffekte</th>
<th>Besseres Wissen über die Versorgungssicherheit der Stadt</th>
</tr>
</thead>
</table>
| **Notwendige Schritte/ Fristigkeit** | - Zusammenstellung und Auswertung des derzeitigen Kenntnisstandes (Status quo)
 - Entwicklung von Forschungsdesign in Verknüpfung mit den langfristigen Klimaprognosen |
| **Akteure** | - Land Berlin (Umwelt)
 - Berliner Wasserbetreibe / Kompetenzzentrum Wasser Berlin
 - Forschungsinstitutionen / Universitäten |
| **Finanzierung (Mittelbedarf/ Fördermöglichkeiten)** | Nach Statusfeststellung des aktuellen Wissenstandes:
Mittelbedarf in Abhängigkeit des Forschungsaufwandes |
| **Konflikte/ Synergien mit Klimaschutz** | Keine |
10.1.4 Umwelt und Natur

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Um dem zunehmenden Flächenverbrauch in Berlin zu begegnen, wird eine differenzierte Betrachtung, sowohl der qualitativen als auch der quantitativen Aspekte von Versiegelung notwendig. Qualitative Aspekte sind:

- Lenkung der baulichen Entwicklung auf Flächen, auf denen die Böden bereits durch frühere Nutzungen bebaut, verdichtet, versiegelt oder anderweitig überprägt sind,
- deutliche Verringerung der baulichen Beanspruchung von Böden mit einer hohen Schutzwürdigkeit und einer bis dato geringen Versiegelung.

Als Grundlage soll hier die Umweltatlaskarte 01.13 „Planungshinweise zum Bodenschutz“ (SenStadtUm 2015c) dienen, die zusammen mit dem „Leitbild und Maßnahmenkatalog für den vororsendenden Bodenschutz in Berlin“ (SenStadtUm 2015d) als Arbeitsinstrument zur differenzierten Bewertung der Leistungsfähigkeit der Berliner Böden, z.B. im Umweltbericht, dient.

Quantitativ betrachtet ist als Ziel eine ausgeglichene Flächenbilanz zwischen Ver- und Entsiegelung im Land Berlin festzuschreiben.

Wirkung

- Erhaltung von wichtigen klimarelevanten natürlichen Funktionen des Bodens
- Reduzierung der Neuversiegelung, womit dem Heat-Island-Effekt entgegengewirkt wird
- Entsiegelung von Flächen, die dauerhaft in den Naturraum integriert werden können

Nebeneffekte

- Schutz von Lebensräumen für Fauna und Flora
- Anlegen von innerstädtischen Grünflächen
- Erweiterung von bestehenden Schutzgebieten (NSG, LSG, Natura 2000) und Forstflächen

Notwendige Schritte/ Fristigkeit

- Schnellstmöglich Datendefizite identifizieren (siehe Maßnahme UN-2)
- Bestehende Schutzwürdigkeitsstufen des Bodens aus der Planungshinweiskarte 01.13 zukünftig auf die Notwendigkeit der Klimaanpassung überprüfen

Akteure

Land Berlin (Umwelt – Bodenschutz)

Finanzierung (Mittelbedarf/ Fördermöglichkeit)

Erstellung der Umweltatlas Karten für Boden: 40.000 €/Jahr, davon anteilig Information zu Belangen der Klimaanpassung
10.1 Maßnahmenblätter

|-------------------------------------|--|

Kommentare

Literatur:

SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt) (2014): Dokumentation des Expertenworkshops „Entsiegelungspotenziale in Berlin“, Finanzierungsinstrumente und Kostenschätzung für Entsiegelungsmaßnahmen;
SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt) (2015a): Umweltatlas Berlin; 01.16 Entsiegelungspotenziale (Ausgabe 2015);

UN-2 BODENMONITORING: EINRICHTUNG VON INNERSTÄDTISCHEN BODENDAUERBEOBACHTUNGSFLÄCHEN

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung
- Erfassung und Beschreibung des aktuellen Bodenzustands
- Langfristige Überwachung der Veränderungen des Bodens in Berlin unter den veränderten Bedingungen des Klimawandels
- Ableitung von Prognosen und zielführenden Maßnahmen zum Schutz des Bodens

Nebeneffekte
k. A.

Notwendige Schritte/ Frisitigkeit
- Konzepterstellung über Funktion der BDF und den Aufbau einer bisher im Land Berlin noch nicht existierenden digitalen Bodenpunktdatenbank, Erfassung und Auswertung der Monitorierergebnisse sowie Vernetzung mit Bodenpunktdaten von Universitäten und anderen Instituten
- Suche geeigneter innerstädtischer Flächen nach den Kriterien: offene, unversiegelte, innerstädtische Fläche; Berlin typischer Stadtboden; langfristig gesicherte Fläche; Möglichkeit zur Sicherung der Fläche zum Schutz vor Diebstahl
- Langfristige Sicherung und Etablierung des Monitorings in der Senatsverwaltung für Stadtentwicklung und Umwelt, Referat VIII C – Bodenschutz

Akteure
Land Berlin (Umwelt – Bodenschutz)

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
- Langfristige Sicherung der Finanzierung der geeigneten Bodendauerbeobachtungsflächen
- Basis-BDF: 8-15.000 € für die einmalige Flächeneinrichtung + Betriebskosten von 1.500 €/ Jahr (ohne Personal)
- Intensiv-BDF: 40-50.000 €/ Jahr bei monatlicher Probenahme

Konflikte/ Synergien mit Klimaschutz
Offen: Erkenntnisgewinn über CO2-Speicherung und Wasserspeicherfähigkeit, insbesondere des pflanzenverfügbaren Wassers der Berliner Stadtböden

Kommentare
Literatur:

UN-3

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Intakte Moore sind Kohlenstoff- und Nährstoffspeicher, bieten zahlreichen seltenen und bedrohten Tier- und Pflanzenarten Lebensraum und haben Einfluss auf den Wasserhaushalt und das lokale Klima. Durch den Klimawandel wird die ohnehin schon kritische Situation der Berliner Moore noch weiter verschärft. Schutz, Pflege und Renaturierung der Moorböden dienen somit nicht nur dem Klimaschutz, sondern vor allem auch der Klimaanpassung. Für Berlin ist nachgewiesen, dass ca. 50% der Moorböden direkt zum Kaltluftaustausch, mehr als 50% zum Hochwasserschutz und mehr als 60% zum Wasserrückhalt in der Landschaft beiitragen (HUB 2015 a). Von 76 Moor en in Berlin (0,8% der Landesfläche), sind jedoch bereits jetzt über 50% der Berliner Moorflächen degradiert (HUB 2015 a).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

221

Wirkung
- Erhaltung/Stärkung von Kohlenstoff- und Nährstoffspeichern
- Erhaltung des Lebensraums für seltene und bedrohte Tier- und Pflanzenarten
- Verbesserung des Wasserhaushalts und des lokalen Klimas

Nebeneffekte
- k. A.

Notwendige Schritte/ Fristigkeit
- Festlegung von prioritären Moorstandorten, auf denen die Maßnahme vorzugsweise umgesetzt werden soll
- Entwicklung weiterer Förderprogramme zur Finanzierung (siehe Projekt „Miles for Moor“)
- Etablierung der MoorFutures zur regionalen CO2-Kompensation auch in Berlin (MLUV o. J.)

Akteure
Land Berlin (Umwelt - Obere Naturschutzbehörde), Stiftung Naturschutz Berlin; Humboldt Universität zu Berlin, ADT - Albrecht Daniel Thaer-Institut für Agrar- u. Gartenbauwissenschaften, FG Bodenkunde u. Standortlehre

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
Kosten der Renaturierung: Braunmoosmoore ca. 10.000 €/ha (LUA 2004), Torfmoosmoore ca. 40.000 €/ha (STIFTUNG NATURSCHUTZ BERLIN 2013), aber abhängig von konkreter Umsetzung; Förderung der Renaturierungskosten z. B. über das Projekt „Miles for Moor“ der Stiftung Naturschutz Berlin oder über MoorFutures.

Konflikte/ Synergien mit Klimaschutz
- Die Maßnahme trägt gleichzeitig zum Klimaschutz und zur Klimaanpassung bei.
- Vgl. BEK-Maßnahme GeS-18 „Senkenbildung: Schutz, Pflege und Renaturierung der Moorstandorte“

Kommentare
Literatur:
LUA (Landesumweltamt Brandenburg) (2004): Leitfaden zur Renaturierung von Feuchtgebieten in Brandenburg; Studien und Tagungsberichte; Bd. 50; S. 124.
UN-4 FORTFÜHRUNG UND AUSBAU DES BERLINER MOORMONITORINGS

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkung</td>
<td>Erkenntnisse zu Veränderungen der Moore in Berlin unter den veränderten Bedingungen des Klimawandels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ableitung von zielführenden Maßnahmen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>k. A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notwendige Schritte/Fristigkeit</td>
<td>Langfristige Zusicherung der Finanzierung für ein dauerhaftes und erweitertes Moormonitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akteure</td>
<td>Land Berlin (Umwelt - Obere Naturschutzbehörde); Humboldt Universität zu Berlin, ADT - Albrecht Daniel Thaer-Institut für Agrar- u. Gartenbauwissenschaften, FG Bodenkunde u. Standortlehre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finanzierung (Mittelbedarf/Fördermöglichkeiten)</td>
<td>Derzeitig für acht Moore in Natura2000 Gebieten, finanziert durch die Obere Naturschutzbehörde:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- hydrologisches Moormonitoring (Moorwasserpegel monatlich. Datenlogger auslesen und Situation auch zu Niederschlagsverteilung und Grundwasserförderung BWB im Bericht hydrologisch bewerten) ca. 150.000 €/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vegetation – Analyse von Dominanztbeständen (Zielvegetationseinheiten u. Störungszeiger) plus alle 3 Jahre Sphagnum-Kartierung u. Vegetationsaufnahme ca. 70.000 -100.000 €/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ggf. zukünftig:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Faunengruppen ca. > 100.000 €/a (Interview Herr Brandt 2015; → Kap. 14, Teil II FOK-Endbericht)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konflikte/Synergien mit Klimaschutz</td>
<td>Keine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UN-5 SICHERUNG, PFLEGE UND ENTWICKLUNG DER BERLINER WÄLDER

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Ziel dieser Maßnahme ist die Sicherung, Pflege und Entwicklung der Berliner Waldbäume. Im Vordergrund der Maßnahme steht deswegen die weitere Förderung bzw. der Ausbau des Berliner Mischwaldprogramms, das seit 2012 zum Umbau der instabilen Kiefernreinbestände zu stabilen und vitalen Mischwaldbeständen umgesetzt wird. Um bis 2060 den Waldumbau auf etwa der Hälfte der</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

223
Berliner Waldfläche durch natürliche Verjüngung oder Pflanzung zu initiieren, müssen jährlich auf ca. 100 ha Fläche die jeweils erforderlichen waldbaulichen Maßnahmen durchgeführt werden (persönliche Information Riestenpatt/Münte 2015; siehe Anlage 11.5, Interviews). Dazu gehören auch die Berliner Waldflächen, die im Land Brandenburg liegen. Mit der Maßnahme soll die Finanzierung gesichert werden.

Wirkung

Die Maßnahme stärkt diejenigen Funktionen des Waldes, die den Folgen des Klimawandels entgegenwirken bzw. dies abmildern:

- Erhalt und Verbesserung der CO₂ Senkenleistung
- Verbesserung des Wasserhaushaltes
- Minderung des Oberflächenwasserabflusses bei Starkregenereignissen
- Sicherung der Trinkwassergewinnung der Metropole
- Schutz des Bodens
- Luftreinhaltung
- klimatischer Ausgleich
- Erhaltung der biologischen Vielfalt

Nebeneffekte

- Erhaltung und Verbesserung der Lebensqualität der Menschen
- Erhaltung der Leistungsfähigkeit des Naturhaushaltes
- Gestaltung der Stadt, Erholung, Umweltbildung
- Erhaltung des Landschaftsbildes

Notwendige Schritte/ Fristigkeit

Sicherstellung der langfristigen Finanzierung für die jährlichen waldbaulichen Maßnahmen durch den Senat

Akteure

Land Berlin (Umwelt), Berliner Forsten

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Öffentliche Kosten: Mischwaldprogramm 1 Mio. € pro Jahr

Konflikte/ Synergien mit Klimaschutz

keine

UN-6

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
</tr>
</thead>
</table>
| Übergreifend

Maßnahmenbeschreibung

Die Daten, die im Forstlichen Umweltmonitoring der oberen Inventurbene (EU Level-II-Monitoring) erhoben werden, eignen sich aufgrund ihrer kontinuierlichen/periodischen Aufnahmezeitpunkte und ihrer Standorttreue sehr gut, um daraus Erkenntnisse zur langfristigen Entwicklung der Böden und deren dynamische Bodenprozesse abzuleiten (KAUFMANN-BOLL/ KAPPLER/ LAZAR et al. 2011).

| Wirkung | Erkenntnisse zu Veränderungen des Waldes in Berlin unter den veränderten Bedingungen des Klimawandels
Ableitung von zielführenden Maßnahmen |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebenwirkungen</td>
<td>Es werden zusätzliche Parameter z.B. zum Boden gemessen, die u.a. für das erforderliche Bodenmonitoring genutzt werden können</td>
</tr>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>Langfristige Zusicherung der Finanzierung von Level-II-Dauerbeobachtungen der zusätzlichen Flächen im Grunewald und im Köpenicker Wald</td>
</tr>
<tr>
<td>Akteure</td>
<td>Land Berlin (Umwelt), Berliner Forsten</td>
</tr>
<tr>
<td>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</td>
<td>50.000 € pro Jahr und Fläche</td>
</tr>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Kommentare | Literaturen:
<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Straßen-, Wald- und Parkbäume, werden unter den geänderten Standortbedingungen im Zuge des Klimawandels erheblichem Stress durch Trockenheit, Schädlinge, Krankheiten und Spätfröste ausgesetzt sein. Um die Bäume in Berlin mit ihren essenziellen Klimafunktionen zu erhalten, ist die Erforschung von resilienten Arten wichtig, die in Berlin bereits begonnen hat (FELLHÖLTER/ SCHREINER/ ZANDER et al. 2015).

Wirkung

Sicherung des Stadtgrüns und der Klimafunktion der Bäume

Nebeneffekte

Kosten für Pflege, Schädlingsbekämpfung und Ersatz werden voraussichtlich gesenkt

Notwendige Schritte/ Fristigkeit

- Analyse zum Stand der Forschung zu klimaresilienten Arten in Berlin
- Erstellung einer Pflanzliste gemäß der Empfehlung zur Verwendung gebietseigener Gehölze zur Pflanzung in der freien Landschaft und Übertragung auf den innerstädtischen Bereich

Akteure

Umwelt- und Naturschutzamt, Berliner Forsten, Pflanzenschutzamt

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Konzept: 80.000 €
Laufende Kosten: im Konzept zu benennen (wahrscheinlich eher gering, da keine zusätzlichen Baumpflanzungen vorgesehen sind, sondern lediglich die Neuausrichtung bestehender Programme)

Konflikte/ Synergien mit Klimaschutz

keine

Kommentare

Literatur:

10.1 Maßnahmenblätter

UN-8

EINRICHTUNG EINES FLÄCHENPOOLS/ ÖKOKONTOS FÜR BERLIN

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Maßnahmenbeschreibung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
</tr>
</thead>
</table>

Wirkung

Umsetzung naturschutzfachlicher und klimaverbessernder Maßnahmen

Nebeneffekte

Artenschutz durch Freiraumverbund

Notwendige Schritte/ Fristigkeit

Umsetzung der bestehenden Rechtsgrundlage

Akteure

Land Berlin, Umwelt- und Naturschutzbehörden

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Keine gesonderte Finanzierung nötig; dient als Finanzierungsinstrument für Klimaanpassungsmaßnahmen

Konflikte/ Synergien mit Klimaschutz

Leichte Synergien: Flächenpools können auch dem Klimaschutz dienen bzw. können dort Klimaschutzmaßnahmen umgesetzt werden

Kommentare

Literatur:
SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt) (o.J. b): Gesamtstädtische Ausgleichskonzeptionen in Berlin.

227
ÜBERPRÜFUNG VON BESTEHENDEN SCHUTZGEBIETEN

Relevante Klimaänderung

Wirkung

- Der Erhalt schützenswerter Arten bzw. Lebensräume wird trotz Klimawandel begünstigt
- Die Biotopvernetzung ermöglicht es den Arten auf Grund von Klimawandel zu wandern (Artenschutz).

Nebeneffekte

Schutzgebietskategorien sind für den Naturschutz wichtig

Notwendige Schritte/ Fristigkeit

- Prüfung der Schutzzwecke der einzelnen Schutzgebiete in Berlin
- Monitoring der Arten bzw. Lebensräume, um Grenzen zu überprüfen
- Ausbau der Biotopvernetzung
Maßnahmenblätter

<table>
<thead>
<tr>
<th>Akteure</th>
<th>Land Berlin (Umwelt), Obere Naturschutzbehörde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</td>
<td>k. A.</td>
</tr>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>keine</td>
</tr>
</tbody>
</table>

SICHERUNG UND PFLEGE DER BERLINER KULTURLANDSCHAFT

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Gute Beispiele bieten die Projekte auf der ehemaligen Rieselfeldlandschaft Hobrechtsfelde, wo ein Erprobnungs- und Entwicklungsvorhaben (E+E) für das größte Waldweidegebiet Deutschlands 2015 abgeschlossen wurde (SenStadtUm o.J.c), und dem NSG „Falkenberger Rieselfelder“, wo seit 1998 ein Beweidungsprojekt mit Abbildzüchtungen, also Wildformen von Pferd und Auerochse betrieben wird (SenStadtUm o.J.f). Diese ungewöhnlichen Tierrassen locken viele BesucherInnen an und haben gleichzeitig den Vorteil, dass sie widerstandsfähiger gegenüber Umwelteinflüssen und pflegeleichter sind (SenStadtUm o.J.g).
Wirkung
- Flächen bleiben offen, so dass ihre Funktion für Naherholung und klimatischen Ausgleich für die Bevölkerung erhalten bleibt
- Arten- und Biotopschutz für seltene Flora/ Fauna

Nebeneffekte
- Falls nicht die üblichen Nutztierrassen für die Beweidung eingesetzt werden, gewinnen die Flächen zusätzlich an Attraktivität und fungieren als Erlebnisort und Besuchermagnet,
- Enge Verbindung zu HF Kultur, Tourismus & Sport,
- Beitrag zur Umweltbildung,
- Beitrag zur Wissenschaft durch Begleitmonitoring, z.B. bei E+E.

Notwendige Schritte/ Fristigkeit
Falls nötig/möglich, neue, geeignete Flächen ausfindig machen.

Akteure
Land Berlin (Umwelt), je nach Lage und Bewirtschaftungsziel: Berliner Forsten, Naturparkverwaltungen, Berliner Stadtgüter, Gemeinden und Städte, Naturschutzstationen usw.

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
Beispiel E+E Hobrechtsfelde: Laufzeit 2011-2015, mindestens 3,5 Mio. € über Förderungen (SenSTADTUm o.J.f)

Konflikte/ Synergien mit Klimaschutz
keine

Kommentare
Literatur:

SICHERUNG, STEIGERUNG UND MONITORING DES INNERSTÄDTISCHEN GRÜNVOLUMENS

Relevante Klimaänderung
<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übergreifend</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maßnahmenbeschreibung
Ein Grünvolumenmonitoring wird für klimatische Auswertungen und Planungen („Planungshinweis- karte Stadtlima“, SenSTADTUm 2015b) benötigt und sollte daher eingeführt werden.

| Wirkung | - Verbesserung der klimatischen Funktionen des Stadtgrüns: Verdunstung, Abkühlung, Beschattung, lokale Luftzirkulation, Staubbindung, Sauerstoffproduktion
- Sicherung der Durchlüftungssituation mit Kalt- und Frischluft
- Sicherung von Erholungsflächen |
|---|--|
| Nebeneffekte | - Verbesserung der Lebensqualität in der Stadt aufgrund des besseren Stadtklimas und –bildes
- Nutzen für Biodiversität |
- Aufbau eines Grünvolumenmonitorings, ggf. Etablierung im Umweltatlas
- Nutzung des Grünvolumenmonitorings für klimatische Auswertungen und Planungen („Planungshinweiskarte Stadtklima“) |
| Akteure | Land Berlin (Umwelt - Informationssystem Stadt und Umwelt) |
| Finanzierung (Mittelbedarf/ Fördermöglichkeiten) | Sicherung und Steigerung: gering – hoch (projektabhängig)
Grünvolumenmonitoring: ca. 50.000 € pro Jahr, fünfjähriger Turnus |
| Konflikte/ Synergien mit Klimaschutz | Leichte Synergien, da Grünvolumen als Kohlenstoffsenke wirkt |
| Kommentare | Literatur:
ASCCUE (2003-2006): Adaptation Strategies for Climate Change in the Urban Environment (ASCCUE), University of Manchester.
<table>
<thead>
<tr>
<th>UN-12</th>
<th>INFORMATIONSKAMPAGNE „KLIMAANPASSUNG IM KLEINGARTEN“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Wirkung</td>
<td>Umweltbildung</td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>Informationsgewinn und dadurch Steigerung der Akzeptanz bestimmter Vorschriften/ Gesetze</td>
</tr>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>Da bereits Seminare zum Thema stattfinden und Kontakte zum Pflanzenschutzamt geknüpft sind, sind weitere Schritte wahrscheinlich ohne großen Aufwand umzusetzen und keine Konflikte zu erwarten.</td>
</tr>
<tr>
<td>Akteure</td>
<td>Kleingartenvereine, Landesverband Berlin der Gartenfreunde e.V., Berliner Pflanzenschutzamt</td>
</tr>
<tr>
<td>Finanzierung</td>
<td>Wie bisherige Artikel/ Seminare/ Vorträge, keine neuen Kosten</td>
</tr>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>keine</td>
</tr>
</tbody>
</table>
10.1.5 Energie- und Abfallwirtschaft

<table>
<thead>
<tr>
<th>ENA-I</th>
<th>FÖRDERUNG ENERGIEEFFIZIENTER KÜHLSYSTEME IM NEUBAU UND BESTAND DURCH MODELLVORHABEN, ZZGL. INFORMATION UND BERATUNG VON IMMOBILIENEIGENTÜMERN</th>
</tr>
</thead>
</table>

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Im Neubau und Bestand sind daher effiziente und klimaverträgliche Systemlösungen (wie z.B. Gebäudeklimaanlagen, kombiniert womöglich mit passiver Kühlung) zu präferieren. Im Neubaubereich (und bei Erweiterungen im Bestand von über 50 m² Fläche) regelt die EnEV 2014 den sommerlichen Mindestwärmeschutz für Nichtwohngebäude (§ 4, Absatz 4) und verweist für das Nachweisverfahren auf DIN 4108-2 (Februar 2013), das ein vereinfachtes (Sonneneintragskennwerte) und ein aufwendigeres Verfahren (thermische Gebäudesimulation) vorsieht. Letzteres hat den Vorteil, dass der Nachweis mit wesentlich geringerem baulichem oder lüftungstechnischem Aufwand erbracht werden kann (Karwatzi/Nikolova 2016). Mindestziel wäre es hier, Unternehmen über die Vorteile dieses aufwendigeren Verfahrens zu informieren.

Wirkung

Nebeneffekte

Verbesserung der Informationslage sowie der Sensibilisierung der betroffenen Akteure in der Stadtgesellschaft für das Thema Klimaanpassung, v.a. für die Bedeutung von integrierten Sys-
temansätzen und die Bedeutung von Begrünungsmaßnahmen. Hierbei ergeben sich mögliche Synergien mit folgenden AFOK-Maßnahmen anderer Handlungsfelder:
- Begrenzung konventioneller Klimaanlagen → HF Gebäude, Stadtentwicklung, Grün- und Freiflächen
- Verbesserung der Informationen über gebäudebezogene Maßnahmen der Klimaanpassung für Private → Sensibilisierung für privaten Objektschutz für Mieter/- und Eigentümer/-innen → HF Gebäude, Stadtentwicklung, Grün- und Freiflächen
- Verbesserung des sommerlichen Wärmeschutzes bei gewerblichen (Neu-)Bauten, inkl. Beratung und Begleitung von Unternehmen → HF Industrie, Gewerbe und Finanzwirtschaft

Notwendige Schritte/ Fristigkeit

<table>
<thead>
<tr>
<th>Notwendige Schritte/ Fristigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:</td>
</tr>
<tr>
<td>- Modellvorhaben unterstützen und publik machen</td>
</tr>
<tr>
<td>- Informationen bereitstellen und Bauherren bzw. Unternehmen für Installation von Gebäude-klimaanlagen und passiven Klimatisierungsansätzen sensibilisieren (bspw. über Workshops, Seminare, Informationsmaterialien)</td>
</tr>
<tr>
<td>- Entwickeln einer Strategie mit der Berliner Wirtschaft um Informationen und Beratung von Immobilieneigentümern voranzubringen</td>
</tr>
<tr>
<td>- Relevante Akteure hierzu identifizieren und vernetzen. Dies erfordert u.a. die Bereitstellung einer entsprechenden Plattform</td>
</tr>
</tbody>
</table>

Akteure

<table>
<thead>
<tr>
<th>Akteure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Berlin (Umwelt), IHK, Handwerkskammer, Branchenverbände, Bauherren und Unternehmen, Immobilienwirtschaft</td>
</tr>
</tbody>
</table>

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

<table>
<thead>
<tr>
<th>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</th>
</tr>
</thead>
</table>

Konflikte/ Synergien mit Klimaschutz

<table>
<thead>
<tr>
<th>Konflikte/ Synergien mit Klimaschutz</th>
</tr>
</thead>
</table>

Kommentare

<table>
<thead>
<tr>
<th>Kommentare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>

INSTITUTIONELLE VORSORGE GEGENÜBER POTENZIELLEN STÖRUNGEN IN DER STROMVERSORGUNG

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebeneffekte</td>
<td>Erhöhung der Sensibilisierung und Akzeptanz der betroffenen Akteure in der Stadtgesellschaft für das Thema Klimaanpassung (insbesondere über die Schaffung eines monetären Bewusstseins). Weitere Synergien ergeben sich mit den ebenfalls im Bereich Energiewirtschaft angesiedelten AFOK-Maßnahmen zur Verbesserung und Optimierung der Energieinfrastruktur mit Fokus Netze (vgl. E-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.1 Maßnahmenblätter

Eine wichtige Nebenwirkung der Umsetzung dieser Maßnahme jenseits energie- und klimapolitischer Fragen besteht in der Steigerung der allgemeinen Resilienz in Berlin, insbesondere wenn die vorgeschlagene Kombination aus technischen und sozialen Vorkehrungen für einen Blackout realisiert wird. Gerade der Aufbau der Schnittstellen zwischen Energieversorgern, Katastrophenschutz und nachbarschaftlicher Selbsthilfe bis auf die Ebene der 447 Planungsräume würde auch im Falle terroristischer Anschläge die Verwundbarkeit der Stadtgesellschaft herabsetzen.

Notwendige Schritte/ Fristigkeit

Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:

- Vulnerable Bereiche und Infrastrukturen identifizieren und lokalisieren, sodass Aktivitäten (z.B. Installation von Notstromaggregaten) gezielt im Stadtgebiet realisiert werden können
- Zuständigkeit für entsprechende Aktivitäten (bspw. Erstellung von Notfallplänen) prüfen
- Konzept für die (Weiter-)Entwicklung erarbeiten bzw. Aktivitäten in den relevanten Instituten fest verankern
- Bewusstsein schärfen (bspw. für die verbesserte Nutzung und Installation von Notstromaggregaten)
- Personalstruktur anpassen, sodass störanfällige Zeiten besser überwacht werden können
- Schnittstellen zwischen Energiewirtschaft, Katastrophenschutz und Bevölkerung aufbauen und ausstatten

Akteure

Netzbetreiber, Berliner Energieversorger, Branchenverbände und Unternehmen v.a. in Bereichen mit kritischen Infrastrukturen, Berliner Feuerwehr, Land Berlin (Inneres), Bezirke

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Finanzierung erfolgt über Netzbetreiber, Berliner Energieversorger und betroffene Unternehmen. Land Berlin (SenInnSp) übernimmt die Schnittstellen Katastrophenschutz/ Bevölkerung

Konflikte/ Synergien mit Klimaschutz

Kommentare

Literatur:

VERSTÄRKTE ABSTIMMUNGEN BEI DER PLANUNG UND REALISIERUNG VON ENERGIEANLAGEN MIT UMWELTBELANGEN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung

Nebeneffekte

Notwendige Schritte/Fristigkeit
Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:
- Potenzielle Schäden oder Verluste von Flora und Fauna identifizieren
- Mögliche Kriterien formulieren und Verständigung zu entsprechenden Festsetzungen gemäß des gesetzlichen/ planerischen Handlungsrahmens.
- Hierbei betroffene Akteure informieren und in den Prozess der Festsetzung von Kriterien mit einbeziehen.

Akteure
Land Berlin (Umwelt), Umwelt- und Naturschutzverbände, Planer/ Projektentwickler und Betreiber von Energieanlagen, Energieversorger

Finanzierung (Mittelbedarf/Fördermöglichkeiten)
Förderung gegebenenfalls für Austausch (z.B. über runde Tische) zwischen den betroffenen Akteuren.

Konflikte/Synergien mit Klimaschutz
keine
10.1 Maßnahmenblätter

Kommentare

Literatur:

<table>
<thead>
<tr>
<th>ENA-4</th>
<th>VERBESSERUNG UND OPTIMIERUNG DER ENERGIEINFRASTRUKTUR MIT FOKUS NETZE</th>
</tr>
</thead>
</table>

Relevante Klimaänderung

| Relevante Temperatur | Niederschlag | Wind | Übergreifend |

Maßnahmenbeschreibung

Wirkung

Nebeneffekte

Mögliche Konflikte mit dem Naturschutz können sich durch zusätzliche Erdkabel ergeben, sofern dadurch negative Auswirkungen auf die Vegetation und die Biodiversität in der Stadt entstehen. Grund
Hierfür ist die Erwärmung des über den Erdkabeln liegenden Erdreichs, verursacht durch die hohe elektrische Leistung (Kempkens 2014). Dies ist bei Planungsprozessen zu berücksichtigen.

<table>
<thead>
<tr>
<th>Notwendige Schritte/ Fristigkeit</th>
<th>Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Umrüstung auf Erdkabel sowie Modernisierung und Ausbau des Stromleitungsnetzes (über engmaschigere Netze) weiter vorantreiben</td>
</tr>
<tr>
<td></td>
<td>- Mögliche Aktivitäten für den Ausbau der Fern- und Nahwärme sowie die dezentrale Nutzung von Abwärme identifizieren und Projekte (u.a. zu Wärme- und Kälteverbünden) einleiten</td>
</tr>
<tr>
<td></td>
<td>- Betroffene Akteure in der Stadtgesellschaft (z.B. Netzbetreiber, Energieversorger, Projektentwickler/ Planer, Bauherren) vernetzen und sensibilisieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Akteure</th>
<th>Netzbetreiber, Berliner Energieversorger, Projektentwickler/ Planer, Bauherren</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</th>
<th>Förderung gegebenenfalls für Austausch zwischen den betroffenen Akteuren.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Konflikte/ Synergien mit Klimaschutz</th>
<th>Synergien mit dem Klimaschutz entstehen durch die Verbesserung und Optimierung der netzbedingten Systemdienstleistungen für eine (dezentrale) Transformation des Energiesystems in Berlin (vgl. BEK).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kommentare</th>
<th>Literatur:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ENA-5</th>
<th>VERBESSERUNG UND OPTIMIERUNG DER ENERGIEINFRASTRUKTUR MIT FOKUS SPEICHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Potenziell vermehrt auftretende (Extrem-) Wetterereignisse können vor allem über den Stromimport zu Beeinträchtigungen und Schäden in der Strom- und Wärmeverorschung führen. Über die Verbesserung und Optimierung der Energieinfrastruktur im Bereich der Speicher kann dem entgegen gewirkt werden. So ist über den Ausbau von Energiespeichern eine zeitversetzte Abdeckung von Spitzenlasten möglich. Dies gilt auch vor dem Hintergrund der zunehmenden Integration von erneuerbaren Energien in das Energiesystem. Momentan kommen rd. 4 Prozent der Primärenergie Berlins aus erneuerbaren Quellen (Hirschl/ Reußwig/ Weiss et al. 2015a), u.a. aus Solarenergie mit</td>
</tr>
</tbody>
</table>

Wirkung

Nebeneffekte

Notwendige Schritte/ Fristigkeit
Die folgenden Schritte sind mittelfristig umzusetzen:
- Bereitstellung von Informationen für innovative Speicheroptionen (z.B. solare Aquiferspeicher)
- Potenzielle Standorte für innovative Speicheroptionen ermitteln und in bestehende Strukturen/ Bau- und Planungsvorhaben integrieren
- Pilotprojekte für innovative Speicheroptionen identifizieren und Akteure (z.B. Energieversorger/-dienstleister, Projektentwickler/ Planer etc.) vernetzen
- Ggf. Forschungseinrichtungen einbinden

Akteure
Berliner Energieversorger/-dienstleister, Netzbetreiber, Projektentwickler/ Planer, Ggf. Forschungseinrichtungen

Finanzierung
(Mittelbedarf/ Fördermöglichkeiten)

Konflikte/ Synergien mit Klimaschutz
Synergien mit dem Klimaschutz bestehen durch die Verbesserung und Optimierung der speicherbedingten Systemdienstleistungen für eine (dezentrale) Transformation des Energiesystems in Berlin, vgl. Berliner Energie- und Klimaschutzprogramm (BEK)

Kommentare
Literatur:
<table>
<thead>
<tr>
<th>ENA-6</th>
<th>SICHERUNG DER ABFALLSAMMLUNG BEI ANHALTENDER HITZE UND VEBESSERTER GESUNDHEITSSCHUTZ DER MITARBEITER/-INNEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Wirkung</td>
<td>Durch die Verlagerung der Abholzyklen werden die Mitarbeiter/-innen besser geschützt, ebenso durch die Anpassung der Schutzvorkehrungen bei Hitzespitzen. Die Überprüfung der Abholzyklen sowie der technischen Möglichkeiten der Geruchsreduktion dient in erster Linie dem Schutz der betroffenen Bevölkerung, in zweiter auch dem der Mitarbeiter/-innen.</td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>Verbesserung der Stadthygiene unter veränderten Rahmenbedingungen. Der mögliche Einsatz von Elektrofahrzeugen im Rahmen der verschobenen Schichten kann die Lärm- und Abgasbelastung mindern, ebenso die Nachrüstung der biogas-betriebenen Flotte. Aktuell stehen arbeits-/tarifrechtliche sowie praktische Gesichtspunkte (Laden- und Schulöffnungszeiten) dieser Maßnahme entgegen, die daher erst mittel- bis langfristig angegangen werden kann.</td>
</tr>
<tr>
<td>Notwendige Schritte/Fristigkeit</td>
<td>Die Anpassung der Schutzangebote für Mitarbeiter/-innen bei Hitze erfolgt kurzfristig nach Bedarf, sollte aber mit Blick auf die sich ändernde klimatische Situation immer wieder überprüft werden. Bei der Verschiebung der Leerungszeiten generell handelt es sich um eine mittel- bis langfristige Maßnahme, die betriebliche Abläufe berührt und die Abstimmung mit den Öffnungszeiten der Kitas, Schulen und Geschäfte erfordert (vgl. MGBS-9).</td>
</tr>
<tr>
<td>Akteure</td>
<td>Entsorgungsunternehmen (z.B. Berliner Stadtreinigung, ALBA) für organisatorische Anpassung. Land Berlin (u.a. Wirtschaft) als Partner für die mittel- bis langfristige Umstellung der Öffnungszeiten.</td>
</tr>
<tr>
<td>Finanzierung</td>
<td>Der verbesserte Hitzeschutz der Mitarbeiter/-innen kann ohne großen Mehraufwand durch die Entsorgungsunternehmen in Fortschreibung ihrer aktuellen Bemühungen erfolgen. Die möglicherweise erfolgende Verkürzung der Abholzyklen verursacht zusätzliche Kosten, die nur unternehmensintern und in Abhängigkeit von den abgedeckten Stadtgebieten berechenbar sind. Nicht abzuschätzen ist in diesem Zusammenhang auch, ob und ggf. wie sich dadurch die Abfallgebühren entwickeln werden. Mögliche Tarifänderungen können nur mittel- bis langfristig erfolgen; die Auswirkung auf die Kosten situation der Entsorgungsunternehmen ist derzeit nicht abzuschätzen.</td>
</tr>
<tr>
<td>Konflikte/Synergien mit Klimaschutz</td>
<td>keine</td>
</tr>
</tbody>
</table>
ENA-7

VERSTÄRKUNG DER BEMÜHUNGEN ZUR ABFALLVERMEIDUNG

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung

Die Reduzierung des Abfallaufkommens würde die Umwelt und das Budget der Entsorgungsunternehmen entlasten. Die Verschiebung des biogenen Anteils aus der grauen Restmülltonne in die Biotonne würde die energetisch und stofflich verwertbaren Anteile im städtischen Abfallaufkommen erhöhen.

Nebeneffekte

Positive ökologische Nebeneffekte der Abfallvermeidung bzw. besseren Mülltrennung

Positive ökonomische Effekte der Abfallvermeidung bzw. besseren Mülltrennung für Entsorger/ private Haushalte

Notwendige Schritte/Fristigkeit

- Kampagne *Trennstadt Berlin* mit Blick auf Klimaschutz und Klimaanpassungsziele ausbauen
- Verstetigung und Ausweitung von Modellvorhaben zur Abfallvermeidung zwischen BSR und Wohnungswirtschaft sowie Unternehmen
- Ausweitung der Aktivitäten zur Eindämmung von Plastiktüten (z.B. Erweiterung des Akteurs-Netzwerks, Unterstützung durch Kampagnen)

Kurz- und mittelfristig

Akteure

BSR, Land Berlin (Umwelt), Handel, Umweltverbände

Finanzierung (Mittelbedarf/Fördermöglichkeiten)

Mittelbedarf: gering - mittel

Konflikte/Synergien mit Klimaschutz

Synergien mit Klimaschutz durch Abfallvermeidung, da Emissionen der Abfallbeseitigung unterbleiben.
10.1.6 Industrie, Gewerbe und Finanzwirtschaft

<table>
<thead>
<tr>
<th>Maßnahmenblätter</th>
<th>AUSWEITUNG DER BEREITSTELLUNG VON VERLÄSSLICHEN WETTER-PROGNOSEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
</tbody>
</table>

Maßnahmenbeschreibung

Die Zunahme von Wetterszenarien und sich stetig verändernden Wetterereignissen ändert die Rahmenbedingungen für wirtschaftliches Handeln (*shifting baseline*), speziell für wettersensible Branchen. In Zukunft wird es wichtiger werden, kleinräumig aufgelöste Wetterprognosen mit möglichst hoher Verlässlichkeit denjenigen Akteuren in der Wirtschaft zeitnah zur Verfügung zu stellen, die eine besonders hohe Vulnerabilität aufweisen (z.B. Zustelldienste, Abfallwirtschaft, Baugewerbe, Land- und Forstwirtschaft, Wasserwirtschaft).

Die Berliner Wirtschaft soll für solche Angebote sensibilisiert und zu ihrer Nutzung im Bedarfsfall angeregt werden.

Wirkung

Durch die Bereitstellung von verlässlichen Wetter-Prognosen kann die Planung und Umsetzung von gezielten Vorsorgemaßnahmen in den Berliner Unternehmen verbessert und damit finanzielle Schäden (Umsatzeinbußen) oder gesundheitliche Beeinträchtigungen reduziert bzw. vermieden werden.

Nebeneffekte

Verbesserung der Informationslage sowie der Sensibilisierung der betroffenen Akteure in der Berliner Wirtschaft für das Thema Klimaanpassung. Eng damit verbunden sind mögliche Synergien mit folgenden AFOK-Maßnahmen anderer Handlungsfelder:

- Verbesserung Informationen über gebäudebezogene Maßnahmen der Klimaanpassung für Private
 - Sensibilisierung für private Objektgruppen (z.B. Mieter/-in) → HF Gebäude, Stadtentwicklung und Gewässerpflege
- Informationsbereitstellung für gefährdete Stadtgebiete (Risikokarten)
 → HF Wasserhaushalt und Wasserwirtschaft
- Aufbau von Frühwarnsystemen → HF Menschliche Gesundheit und Bevölkerungsschutz

Notwendige Schritte/Frünstigkeit

Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:

- Ankündigung der Maßnahme zwecks Sensibilisierung und Motivation durch Land Berlin und IHK
- Umfrage seitens der IHK und der Branchenverbände zwecks Bestands- und Bedarfsermittlung
- Runder Tisch der Berliner Wirtschaft zur Sensibilisierung und Spezifizierung des Bedarfs nach Wetterprognosen
- Pooling der Bedarfe, Kontaktaufnahmen mit potentiellen Anbietern, Aushandlung von Konditionen
- Branchen-/-unternehmensspezifische Festlegung der Formen und Formate der konkreten Informationsbereitstellung

Akteure

IHK, weitere Branchenverbände (Träger)
Land Berlin (Wirtschaft/ BerlinPartner) (Moderation)

Finanzierung (Mittelbedarf/Fördermöglichkeiten)

Kern der Maßnahme (branchenspezifische Wetterdatenbereitstellung) wird durch Wirtschaft getragen
Land Berlin trägt die Moderationskosten
10.1 Maßnahmenblätter

<table>
<thead>
<tr>
<th>Konflikte/ Synergien mit Klimaschutz</th>
<th>keine</th>
</tr>
</thead>
</table>

Kommentare

Literatur:

<table>
<thead>
<tr>
<th>IGF-2</th>
<th>ENTWICKLUNG UND VERBREITUNG VON SCHULUNGSANGEBOTEN/ -MATERIALIEN ZUR PRÄVENTION VON SCHÄDEN DURCH WETTEREXTREME UND VERÄNDERNDE WETTEREREIGNISSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
</tbody>
</table>

Maßnahmenbeschreibung

Wirkung

<table>
<thead>
<tr>
<th>Nebeffekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbesserung der Sensibilisierung und des grundsätzlichen Bewusstseins der betroffenen Akteure in der Berliner Wirtschaft für das Thema Klimaanpassung. Verbunden sind damit u.a. mögliche Synergien mit folgenden AFOK-Maßnahmen anderer Handlungsfelder:</td>
</tr>
<tr>
<td>- Verbesserung Information über gebäudebezogene Maßnahmen der Klimaanpassung für Private</td>
</tr>
<tr>
<td>- Sensibilisierung für privaten Objektschutz für Mieter/- u. Eigentümer/innen → HF Gebäude, Stadtentwicklung und Grün- und Freiflächen</td>
</tr>
<tr>
<td>- Einbindung der Klimaanpassung in bestehende Klimabildungsangebote → Bildung und Öffentlichkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notwendige Schritte/ Fristigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:</td>
</tr>
<tr>
<td>- Überprüfung bereits vorliegender Schulungsangebote/-materialien</td>
</tr>
<tr>
<td>- Klärung der Zuständigkeiten/ verantwortlichen Akteure für die (Weiter-) Entwicklung und Verbreitung von Schulungsangeboten/-materialien; Fokus dabei auf übergreifende sowie branchenspezifische Angebote/ Materialien</td>
</tr>
<tr>
<td>- Ebenfalls Fokus auf die langfristige Entwicklung der Wetterextreme und -veränderungen; hier ggf. Überarbeitung/ Anpassung von existierenden Schulungsangeboten/-materialien</td>
</tr>
<tr>
<td>- Entwicklung neuer Schulungs- und Fortbildungsangebote</td>
</tr>
<tr>
<td>- Bildung eines Pools von qualifizierten Unternehmen, die Lösungsangebote zur Klimaanpassung machen können (z.B. im Bauhandwerk, Heizung/ Sanitär/ Klima, Logistik, Versicherungswirtschaft, Abwasserlösungen, Dachbegrünung...)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Akteure</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHK und weitere Branchenverbände, Spezifische Bildungsträger des Bundes und des Landes Berlin; relevante Akteure (spezifischer) Branchen (z.B. Bauherren und Planer)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Konflikte/ Synergien mit Klimaschutz</th>
</tr>
</thead>
<tbody>
<tr>
<td>In der Ausgestaltung und (Weiter-) Entwicklung der Angebote und Materialien sollte auf allgemeine Konflikte und Synergien mit dem Klimaschutz (z.B. bei der Nutzung von Dachflächen für Photovoltaik und/oder Begrünung etc.) eingegangen werden. Best-Practice-Lösungen sollten gezielt angeboten werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kommentare</th>
</tr>
</thead>
</table>

- Einbindung der Klimaanpassung in Netzwerke und Verstetigungsprogramme zur Klimaneutralität → HF Bildung und Öffentlichkeit
- Initiierung Stadtdebatte zum Paradigmenwechsel Regenwassermanagement „Schwammstadt“ → HF Gebäude, Stadtentwicklung und Grün- und Freiflächen

Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:

- Nutzen von bestehenden Strukturen (Kontakte/ Netzwerke etc.) sowie Austausch zu gemachten Erfahrungen mit ähnlichen Formaten (vgl. EnergieEffizienzTisch Berlin)
- Informieren und Einbinden von staatlichen Institutionen, Verbänden und Unternehmen
- Klärung von Schwerpunkttthemen der runden Tische und der relevanten Akteursgruppen

Land Berlin (Wirtschaft, BerlinPartner), Branchenverbände und weitere relevante Interessensvertretungen (z.B. Gewerkschaften, Umweltverbände, zivilgesellschaftliche Akteure), Unternehmen (unterteilt ggf. in Branchen bzw. nach Unternehmensgröße, Standort), ggf. Akteure anderer Handlungsfelder

Förderung sollte für den Anschub und erste Schritte der Maßnahme bereitgestellt werden. Mittelbedarf gering.
10.1 Maßnahmenblätter

keiten)

Konflikte/ Synergien mit Klimaschutz

keine

Kommentare

Literatur:

IGF-4

ANPASSUNG DER BAUFÖRDERUNG UND VON AUSFÜHRUNGSFRISTEN FÜR BAUAKTIVITÄTEN

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übergreifend</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maßnahmenbeschreibung

Einer Anpassung bedürfen auch die Regelungen zur Gestaltung von Bauausführungsfristen. Die „Allgemeinen Vertragsbedingungen für die Ausführung von Bauleistungen“ (VOB/B) halten in § 6 Abs. 2 Nr. 2 fest: „Witterungseinflüsse während der Ausführungszeit, mit denen bei Abgabe des Angebots normalerweise gerechnet werden musste, gelten nicht als Behinderung.“ Es gehört zum Charakteristikum des Klimawandels, dass er die Annahmen darüber ändert, womit „normalerweise gerechnet werden muss“ (shifting baseline). Auch hier ist eine Anpassung erforderlich (Bundesebene).

Wirkung

Nebeneffekte

Notwendige Schritte/ Fristigkeit

Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:
- Bestandsaufnahme der Inanspruchnahme von Saison-Kurzarbeitergeld in Berlin bei der Bundessagentur für Arbeit und Verknüpfung mit den Berliner Wetterdaten zur Ermittlung der Relevanz
- Ausarbeitung von Vorschlägen zur Neuregelung beim Saison-Kurzarbeitergeld und der VOB/B
- Einbringen entsprechender Vorschläge auf Bundesebene
- Parallel: Überprüfung der Möglichkeit, die Bauausführungsfristen in Berlin auch unter gelten dem Recht den sich ändernden Klimabetingungen anzupassen.

Akteure

Unternehmen im Bau- und Ausbaugewerbe, Garten- und Landschaftsbau, Dachdecker Gewerbe, Bauindustrieverband Berlin-Brandenburg e.V., Gewerkschaften (IG Bau), Land Berlin (Justiz, Verbraucherschutz, Umwelt), Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit (LAGetSi).

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Förderung ggf. für Analyse und Bewertung der bisherigen Bauförderung und Ausführungsfristen sowie die Sensibilisierung der Unternehmen im Bau- und Ausbaugewerbe.

Konflikte/ Synergien mit Klimaschutz

keine

Kommentare

Literatur:

IGF-5

ERSTELLUNG UND UMSETZUNG BETRIEBLICHER KLIMAANPASSUNGSKONZEPTEN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Wirkung

Nebeneffekte

Verbesserung des Bewusstseins für das Thema Klimaanpassung bei unterschiedlichen Akteuren in der Berliner Wirtschaft; inkl. zunehmende Vernetzung bezogen auf die Umsetzung von einzelnen Aktivitäten der einzelnen betrieblichen Klimaanpassungskonzepte. Dabei ergeben sich auch mögliche Synergien mit folgenden AFOK-Maßnahmen aus dem Handlungsfeld (vgl. IGF-2/-3 und IGF-6).

Notwendige Schritte/ Fristigkeit

Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:

- Informieren und sensibilisieren der Unternehmen für die Erstellung von betrieblichen Klimaanpassungskonzepten
- Einbinden der Konzepte in das betriebliche Risiko-/ Kontinuitätsmanagement und in unternehmensbezogene Nachhaltigkeitsstrategien, bspw. über die Formulierung von entsprechenden Leitlinien
- Abstimmung von zentralen Themen und Inhalten für die Erstellung der Konzepte (entsprechend der Bedarfe der Unternehmen und der gegebenen Herausforderungen)
- Hierzu nutzen von bestehenden Klimaanpassungskonzepten als Impulsgeber.

Akteure

IHK und weitere Branchenverbände; Unternehmen (unterteilt ggf. in Branchen (vgl. IGF-6) bzw. nach Unternehmensgröße); Land Berlin (Wirtschaft, BerlinPartner)

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Die Förderung sollte für den Anschub und erste Schritte der Maßnahme bereitgestellt werden, bspw. für die Information und Sensibilisierung der Unternehmen bzw. die Erarbeitung von Leitlinien. Darüber hinaus sollten Fördermittel über die Bekanntmachung des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) zur Förderung von Maßnahmen zur Anpassung an den Klimawandel in Anspruch genommen werden.

Konflikte/ Synergien mit Klimaschutz

keine

Kommentare

Literatur:

ERSTELLUNG VON BRANCHENSPZEZIFISCHEN KLIMAANPASSUNGSKONZEPTEN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkung</td>
<td>Durch die Erstellung von branchenspezifischen Klimaanpassungskonzepten und die Identifizierung von entsprechenden Anpassungsmaßnahmen können gezielt wetterbedingte Beeinträchtigungen auf einzelne Teile der Berliner Wirtschaft gemindert werden. Wird an dieser Stelle nicht gehandelt, so ist unter Betrachtung aktueller Klimaprojektionen (mit einer Reichweite bis zum Jahr 2080) aufgrund von Extremereignissen allein für das Baugewerbe eine Schadenssumme von rund 0,1 Prozent des BIPs für Europa vorstellbar (UBA 2011). Diese Summe gilt es durch gezielte Vorsorge zu begrenzen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notwendige Schritte/ Frisitigkeit</td>
<td>Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Analyse und Bewertung der Beeinträchtigungen auf einzelne besonders betroffene Branchen sowie bereits stattfindende Vorsorgemaßnahmen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Identifizierung von relevanten Akteuren einzelner Branchen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Klärung der Struktur der jeweiligen Anpassungskonzepte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zielsetzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Verantwortliche Akteure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reichweite des Konzepts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Etablieren einer kontinuierlichen Vernetzung und Austausch der Akteure der einzelnen Branchen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akteure</td>
<td>IHK & weitere Branchenverbände; Land Berlin (Wirtschaft/ BerlinPartner); Vorreiterakteure einzelner Branchen (z.B. einzelne Unternehmen); weitere Akteure wie Gewerkschaften, Berufsgenossenschaft (z.B. BG BAU).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</td>
<td>Förderung sollte für den Anschub und erste Schritte der Maßnahme bereitgestellt werden, bspw. für Status quo Analyse und Bewertung sowie ggf. für Vernetzung und Austausch. Darüber hinaus sollte geprüft werden, inwiefern Fördermitteln über die Bekanntmachung des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) zur Förderung von Maßnahmen zur Anpassung an den Klimawandel in Anspruch genommen werden können.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>keine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ein Beispiel für eine Checkliste der Risiken auf Baustellen an heißen Tagen zusammen mit Anpasungsstipps findet sich bei der Schweizerischen Unfallversicherungsanstalt (SUVA o.J.): Eine Checkliste für die deutsche Wirtschaft, die nicht auf die Branchenstruktur, sondern auf den Typus des Unternehmens (z.B. Massenmarkt, Spezialmarkt, lange vs. kurze Lieferketten) abstellt, bietet BMWi 2014.

Literatur:

SUVA [Schweizerischen Unfallversicherungsanstalt] (o.J.): Checkliste Arbeiten an heissen Tagen auf Baustellen im Freien. Luzern: SUVA. https://extra.suva.ch/suvalb2c/b2c/start.do;jsessionid=6tSEja7NeI6mdMmG-dlu9XRcS8OtUwfykRoe_SAPmXn9HGDiogH0aB-T6D-ufCqzafplrb_%=%28J2EE505057620%29505057650#.

IGF-7

FLEXIBILISIERUNG VON ARBEITS- UND ÖFFNUNGSZEITEN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

| Nebeneffekte | Verbesserung der Motivation und Effektivität im Arbeitsablauf der Beschäftigten aufgrund von gesteigertem Wohlbefinden, ebenso wie stärkere Sensibilisierung und Verbesserung des öffentlichen Bewusstseins der Stadtgesellschaft für das Thema Klimaanpassung. Dabei ergeben sich mögliche Synergien mit weiteren AFOK-Maßnahmen im Handlungsfeld (vgl. IGF-5/-6 und IGF-9) sowie anderer Handlungsfelder: |

- Anpassung und Verbesserung des Arbeitsschutzes → HF Menschliche Gesundheit und Bevölkerungsschutz |
Notwendige Schritte/ Fristigkeit

Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:
- Status-quo Analyse unter Berücksichtigung des gesetzlichen Rahmens und bereits praktizierter Ansätze (Selbstverpflichtungen!)
- Sensibilisierung wichtiger Multiplikatoren der Berliner Wirtschaft
- Aufzeigen von Handlungsoptionen, inkl. (Weiter-)Entwicklung von Beratungsangeboten
- Ggf. Realisierung von Pilotvorhaben

Akteure

Land Berlin, u.a. über Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit Berlin (LAGetSi); Berufsgenossenschaften (z.B. BG BAU); Gewerkschaften und Kammern (IHK/ HWK); Branchenverbände, inkl. Vorreiterunternehmen einzelner Branchen

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Konflikte/ Synergien mit Klimaschutz

keine

Kommentare

Literatur:

IGF-8

VERBESSERUNG DES SOMMERLICHEN WÄRMESCHUTZES BEI GEWERBLICHEN (NEU-) BAUTEN, INKL. BERATUNG UND BEGLEITUNG VON UNTERNEHMEN

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Mögliche Handlungsoptionen sind die Erstellung von Beraterpools (z.B. zu erfahrenen Architekten) sowie die Bereitstellung von Förderprogrammen (u.a. im Bereich der (Dach-)Begrünung, wie aktuell...

Wirkung

Nebeneffekte
Schaffung von innovativen klimaangepassten Nutzungsmöglichkeiten von Gebäuden wie bspw. Regenwasserretentions- und Erholungsflächen auf begrünten Dachflächen; ebenso wie Verbesserung des Bewusstseins für alternative Kühlmethoden und im Allgemeinen der Sensibilisierung für das Thema Klimaanpassung. Darüber hinaus ergeben sich mögliche Synergien mit folgenden AFOK-Maßnahmen anderer Handlungsfelder:
- Verbesserung Information über gebäudebezogene Maßnahmen der Klimaanpassung für Private – Sensibilisierung für privaten Objektschutz für Mieter/- u. Eigentümer/-innen -> HF Gebäude, Stadtentwicklung und Grün- und Freiflächen
- Initiierung Stadtdebatte zum Paradigmenwechsel Regenwassermanagement „Schwammstadt“ -> HF Gebäude, Stadtentwicklung und Grün- und Freiflächen
- Förderung energieeffizienter Kühltechniken in Neubau und Bestand durch Modellvorhaben, zzgl. Information und Beratung von Immobilieneigentümern -> HF Energie- und Abfallwirtschaft

Notwendige Schritte/ Fristigkeit
Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:
- Bereitstellen von Informationen über bestehende Möglichkeiten zum sommerlichen Wärmeschutz (u.a. mit Fokus klimaneutrale Kühlung)
- Intensivierung von Beratung und verbesserte Koordination von Beratung; inkl. der Begleitung von Unternehmen (Fokus KMUs)
- Erstellung von Beraterpool
- Bereitstellung von (Informationen zu) Förderprogrammen (u.a. im Bereich der (Dach-)Begrünung/ baulicher Maßnahmen)
- Identifizierung von möglichen Referenzprojekten/ Modellvorhaben

Akteure
Land Berlin (Umwelt, Wirtschaft); Berater/ Dienstleister (z.B. Architekten, Planer, Ingenieure, etc.); Bauindustrieverband Berlin-Brandenburg e.V.; IHK und Branchenverbände; KMUs

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Konflikte/ Synergien mit Klimaschutz
Synergie durch Minderungswirkung auf Stromverbrauch bei der Gebäudekühlung.
10.1 Maßnahmenblätter

Kommentare

LITERATUR:

IGF-9

PHYSISCHE/ ORGANISATORISCHE VORSORGE BEI BAUAKTIVITÄTEN IM AUßENBEREICH

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung

Nebeneffekte

Verbesserung der Bewusstseinsbildung der Beschäftigten im Baugewerbe für das Thema Klimaanpassung. Eng daran geknüpft ist auch die Maßnahme zur Bereitstellung von verlässlichen Wetter-Prognosen (vgl. IGF-1) sowie mögliche Synergien mit den folgenden AFOK-Maßnahmen anderer Handlungsfelder:

- Anpassung und Verbesserung des Arbeitsschutzes → HF Menschliche Gesundheit und Bevölkerungsschutz
- Ermöglichung der Zugänglichkeit kühlerer Räume in Hitzeperioden → HF Gebäude, Stadtentwick...
Notwendige Schritte/ Fristigkeit

Die folgenden Schritte sind kurz- bis mittelfristig umzusetzen:

- Analyse und Bewertung von physischen und organisatorischen Vorsorgemaßnahmen im Baugewerbe (sowohl für Hitze als auch für Kälte); kombiniert mit der Durchführung von Bedarfsanalysen
- Integration geeigneter Maßnahmen in interne Betriebsabläufe der Unternehmen. Hierzu Information und Sensibilisierung über Multiplikatoren
- Kontinuierliche Überprüfung und Verbesserung der Maßnahmen; inkl. Abstimmung mit damit vertrauten Interessensvertretungen
- (Langfristige) Festschreibung geeigneter Maßnahmen im tariflicher Arbeitsschutz bei der für das Baugewerbe zuständigen Baugewerkschaft

Akteure

Bauindustrieverband Berlin-Brandenburg e.V.; Berufsgenossenschaft der Bauwirtschaft; IG Bau Bezirksverband Berlin; Unternehmen des Baugewerbes

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Finanzierung sollte für erste (Bedarfs-)Analysen und Bewertungen bereitgestellt werden. Darüber hinaus sollten weitere Fördermöglichkeiten des Bundes geprüft werden, ggf. verfügbar über das Bundesministerium für Arbeit und Soziales (BMAS).

Konflikte/ Synergien mit Klimaschutz

keine

Kommentare

Literatur:

10.1.7 Verkehr, Verkehrsinfrastruktur

VVI-1		AUFBRINGEN VON ANGEPASSTEM STRAßENBELAG		
Relevante Klimaänderung	Temperatur	Niederschlag	Wind	Übergreifend
Wirkung	Durch die Anpassungsmaßnahme wird die Lebensdauer von Asphaltdecken auf dem derzeitigen Stand gehalten (keine zusätzlichen Kosten durch frühere Neuinstallation) und es wird das häufigere Auftreten von Schäden (z.B. Verformungen) vermieden, die zu Unfällen führen können oder den Verkehrsfluss beeinträchtigen.			
Nebeneffekte	k. A.			
Notwendige Schritte/Fristigkeit	Bei der Sanierung oder dem Neubau von Straßenabschnitten sollte ab jetzt die Klimaverträglichkeit des Materials geprüft werden.			
Akteure	Land Berlin (Stadtentwicklung, Umwelt); Straßenbauämter; Straßenbaufirmen, Straßenbauforschung.			
Finanzierung (Mittelbedarf/Fördermöglichkeiten)	Die aktuell schwer abschätzbaren Mehrkosten für hitzeangepasste Straßenbeläge müssen dem Nutzen vermiedener/verminderter Reparaturkosten sowie vermiedener Verkehrsbehinderungen gegenüber gestellt werden.			
Konflikte/Synergien mit Klimaschutz	keine			
VVI-2

Relevante Klimaänderung

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Die Stadtentwässerung ist auf die Häufigkeit und Stärke von Starkregenereignissen ausgelegt, die auf der Erfahrung der letzten Jahrzehnte basiert. Im Zuge des Klimawandels wird sich dieser Erwartungswert ändern (shifting baseline), eine deutliche Zunahme der Starkregenereignisse in Berlin ist schon bis 2050 zu erwarten. Daher muss die Straßenentwässerung an die zukünftige Starkregenstatistik angepasst werden, um Verkehrsstörungen zu vermeiden. Orientierung liefern die „Hamburger Regelwerke für Planung und Entwurf von Stadtstraßen“ (ReStra – BWVI 2010), die die zukünftige Erhöhung von Starkregeneinflüssen in das Planungsgeschehen einbeziehen.

Wirkung

- Einschränkungen für die kritische Infrastruktur Verkehr werden vermieden
- Vermieden werden eventuelle Sperrungen von Straßenbereichen, die nicht nur den privaten, gewerblichen und öffentlichen Personen- und Gütertransport einschränken, sondern im Notfall auch die Durchfahrtmöglichkeiten der Katastrophenschutzinstitutionen folgenreich stören können.

Nebeneffekte

k.A.

Notwendige Schritte/Fristigkeit

Akteure

Land Berlin (Stadtentwicklung, Umwelt); Straßenbauämter; Berliner Wasserbetriebe

Finanzierung (Mittelbedarf/Fördermöglichkeiten)

Konflikte/Synergien mit Klimaschutz

keine

Kommentare

Literatur:

VVI-3 TEILMAßNAHMEN RADVERKEHR

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Im Jahre 2013 wurden 13% aller Wege in Berlin mit dem Fahrrad zurückgelegt (Ahrens 2013; vgl. SenStadtUm 2011b). Laut der Radverkehrstrategie (SenStadtUm 2013) ist es möglich, einen Teil der mit dem Auto zurückgelegten Strecken aufs Fahrrad zu verschieben (0,6 bis 0,9 Mio. Wege) und damit einen Anteil von 18 – 20% der Wege zu erreichen. Diese Steigerung im Modalsplit, sowie die Zielsetzung, sicheren, schnellen und komfortablen Radverkehr zu ermöglichen, muss durch folgende Teilmaßnahmen gewährleistet werden:

(a) kreuzungsfreie (arme) Fahrradschnellwege;
(b) Lichtsignalanlagen an Kreuzungen Rad/Auto;
(c) Radwege ausbauen (mit hinreichender Kapazität);
(d) Abstellanlagen (auch für Cargo-Bikes);
(e) Sicherstellung hinreichender Verknüpfung zum ÖPNV.

Wirkung

Nebeneffekte

- Positiver Effekt für die Gesundheit der Nutzer/-innen
- Geringere Lärmbelästigung
- Geringerer Verkehrsräumbedarf
- Geringere Unterhaltungskosten für die Infrastruktur

Notwendige Schritte/Fristigkeit

Um die Zielvorgaben der Radverkehrstrategie zu erreichen, müssen die Investitionen in den Radverkehr ab sofort intensiviert werden. Im Zuge von anstehenden Sanierungen im Straßenraum und von Neubauten (auch aufgrund der steigend wachsenden Stadt) muss diese Anpassungsmaßnahme beachtet werden.

Akteure

Land Berlin (Stadtentwicklung, Umwelt); Straßenbauämter
10.1 Maßnahmenblätter

Finanzierung (Mittelbedarf/Fördermöglichkeiten)

Konflikte/Synergien mit Klimaschutz

Kommentare

Literatur:

VVI-4

REGELUNG ZUR KÜHLUNG IM ÖPNV

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Wirkung

Nebeneffekte

- Geringere Installationskosten
- Geringere Energiekosten und damit bessere Klimabilanz
- Ausbleiben von zu großen Temperaturunterschieden – welche eine gesundheitliche Belastung darstellen können

Notwendige Schritte

Bei der Neuanschaffung oder Umrüstung von Fahrzeugen des ÖPNV sollte diese Maßnahme umgesetzt werden. Die Stadt könnte die Maßnahme mit passenden Regelungen untermauern.
<table>
<thead>
<tr>
<th>Fristigkeit</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Akteure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betreiber des ÖPNV; Land Berlin (Verkehr)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finanzierung (Mittelbedarf/Fördermöglichkeiten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Maßnahme wird im Zuge von ohnehin anstehenden Investitionen umgesetzt. Es entstehen keine Zusatzkosten, bzw. im Vergleich zur Installation von Klimaanlagen werden sehr wahrscheinlich Kosten eingespart werden können.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konflikte/Synergien mit Klimaschutz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konflikt: erhöhte Kühlung steigert auch den Energiebedarf. Synergie: Attraktivitätssteigerung des ÖPNV mindert die Emissionen aus dem motorisierten Individualverkehr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VVI-5</th>
<th>SICHERHEIT UND ANNEHMLICHKEIT DES FUßVERKEHRS AUF-RECHTERHALTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Mit 31% aller zurückgelegten Wege stellt der Fußverkehr eine wichtige Komponente im Umweltverbund dar. Dieser hat in Berlin einen Anteil von 70% und soll bis zum Jahr 2025 auf 75% steigen (SenStadt 2011). Um dieses Ziel zu erreichen muss die Attraktivität des Fußverkehrs gesteigert werden. Im Zuge des Klimawandels werden jedoch zunehmend Extremereignisse wie Starkregen oder Hitzetage Fußwege unattraktiver (insbesondere für Gruppen mit Einschränkungen) machen. Um dieser Entwicklung entgegenzuwirken müssen folgende Maßnahmen umgesetzt werden:</td>
</tr>
<tr>
<td>- Installation sicherer Trockenpfade, ggf. mit Überwegungen;</td>
<td></td>
</tr>
<tr>
<td>- schattenspendende Strukturen für den Schutz vor direkter Sonnenstrahlung (z.B. Arkaden) realisieren;</td>
<td></td>
</tr>
<tr>
<td>- die Stadt der kurzen Wege umsetzen;</td>
<td></td>
</tr>
<tr>
<td>- vor allem in Schwerpunktregionen wie Haupteinkaufsstraßen, wichtigen Zuwegungen zu öffentlichen Einrichtungen oder zum ÖPNV den Fußverkehr aufwerten;</td>
<td></td>
</tr>
<tr>
<td>Wirkung</td>
<td></td>
</tr>
<tr>
<td>- Attraktivität des Fußverkehrs wird bei Extremwetter erhalten</td>
<td></td>
</tr>
<tr>
<td>- Gesundheitliche Belastung (z.B. bei Hitze) wir verringert</td>
<td></td>
</tr>
<tr>
<td>- Fußverkehr als NOx-freien und klimafreundlichen Verkehr wird gefördert</td>
<td></td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td></td>
</tr>
<tr>
<td>- Positiver Gesundheitseffekt auf Nutzer der Fußwege</td>
<td></td>
</tr>
<tr>
<td>- Geringer Lärmbelastung im Vergleich zu anderen Verkehrsmodi</td>
<td></td>
</tr>
<tr>
<td>- Attraktivere urbane Umwelt (z.B. Entschleunigung)</td>
<td></td>
</tr>
<tr>
<td>- Geringeres Unfallrisiko da ausbleibender Kontakt zum Fahrzeugverkehr</td>
<td></td>
</tr>
<tr>
<td>- In Verbindung mit Anpflanzungen – positive Wirkung auf lokales Klima</td>
<td></td>
</tr>
<tr>
<td>- Geringere Unterhaltskosten im Vergleich zum MIV-genutzten Straßenraum</td>
<td></td>
</tr>
</tbody>
</table>
Notwendige
Schritte/
Fristigkeit

Es sollten spätestens bei anstehenden Sanierungen/ Umbau von entsprechenden städtischen Zonen die Möglichkeiten der Umsetzung dieser Maßnahme berücksichtigt werden. Idealweise sollte pro-

Akteure

Stadtplaner; ÖPNV-Betreiber; Land Berlin (Verkehr); usw.

Finanzierung
(Mittelbedarf/
Fördermöglich-
keiten)

Sollten die Bewohner einer Stadt vermehrt diesen Verkehrsmodus nutzen, würden andere Ver-
kehrsmöglichkeiten entsprechend weniger frequentiert. Da der Unterhalt der Fußgängerverkehrswege günsti-
ger ist, würde dies Kosten einsparen. Kurz- und mittelfristig wären jedoch Investitionen nötig, wel-
che erst langfristig durch eine gesteigerte Lebensqualität, geringere Kosten durch Luftverschmutzung und Klimaschäden amortisiert werden.
Für die Umsetzung der Konzeption zur Förderung des Fußgängerverkehrs wurden im Stadtentwick-
lungsplan Verkehr Berlin von 2011 50 Mio. € bis 2025 veranschlagt (SenSTADT 2011). Für die not-
wendige, andauernde Förderung in gleicher Größenordnung bis zur Mitte des Jahrhunderts wären noch einmal rund 100 Mio. € notwendig.

Konflikte/
Synergien mit
Klimaschutz

Wie beim Fahrradverkehr handelt es sich beim Fußgängerverkehr um eine klimaneutrale Art der
Fortbewegung. Die hier vorgeschlagene Maßnahme deckt sich inhaltlich weitgehend mit der Maß-
nahme V-1 („Attraktivierung des Fußverkehrs“) des BEK (HIRSCHL/ REUSSWIG/ WEiß et al. (2015a): 314 f.).

Kommentare

Literatur:
Hirschl, B.; Reusswig, F./ Weiß, J. et al. (2015a): Für ein klimaneutrales Berlin. Entwurf für einen Berliner Ener-
http://www.stadtentwicklung.berlin.de/umwelt/klimaschutz/bek_berlin/download/BEK-Endbericht-und-
http://www.stadtentwicklung.berlin.de/verkehr/politik_planung/step-

VVI- 6

TASK FORCE VERKEHRSINFRASTRUKTUR-CHECK EINFÜHREN

Relevante
Klimaänderung

Temperatur
Niederschlag
Wind

Übergreifend

Maßnahmen-
beschreibung

Eigentümer und Träger der Verkehrsanlagen in Berlin (Straße, Schiene, Wasserstraßen,
Flughäfen) sollen die jeweiligen Infrastrukturen auf deren Klimasensitivität hin beobachten und ge-
egenüberfall Strategien zur Erhöhung der Resilienz diskutieren/entwickeln. Externe Expertise sowie
Best-Practice-Beispiele aus der eigenen Branche sind einzubeziehen. Die Task-Force soll in regelmäßi-
gen Abständen (etwa alle 5 Jahre) erneuert werden, um auf laufende Änderungen reagieren zu kön-
nen. Eine verkehrsträgerübergreifende Task-Force ist anzustreben.

Wirkung

Die Witterungsverhältnisse haben starke Auswirkungen auf die Funktionalität von Verkehrsanfah-
strukturen und Fahrzeugen. In Bezug auf Klimawandel werden sich die Häufigkeiten und Ausprä-
gungen dieser Witterungsverhältnisse ändern. Mit entsprechenden Anpassungen an Material, Bau-
art, Organisation, Sicherheitsnormen u.a., muss die kritische Infrastruktur letztlich von den Betrei-
<table>
<thead>
<tr>
<th>Nebeneffekte</th>
<th>– Austausch mit anderen Regionen zu Best-Practice ermöglicht auch Erfahrungsaustausch auf anderer Gebieten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>– Aufbau einer Task-Force, bestehend aus Vertretern aller Verkehrsbereiche der Stadt – im Idealfall aufbauend auf existierenden Gremien</td>
</tr>
<tr>
<td></td>
<td>– Netzwerkaufbau zu anderen Kommunen und deren Verkehrsinfrastrukturbetreibern</td>
</tr>
<tr>
<td></td>
<td>– Sammlung existierender Witterungs- und Klimawirkungen auf die Verkehrsinfrastruktur</td>
</tr>
<tr>
<td></td>
<td>– Austausch bzw. Evaluierung durchgeführter und angestrebter Anpassungsmaßnahmen</td>
</tr>
<tr>
<td>Akteure</td>
<td>Kommunale und private Verkehrsinfrastrukturbetreiber; Land Berlin (Umwelt, Verkehr)</td>
</tr>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>keine</td>
</tr>
</tbody>
</table>
| Kommentare | Literatur

10.1.8 Tourismus, Kultur, Sport

<table>
<thead>
<tr>
<th>TKS- 1</th>
<th>ANPASSUNG VON ANGEBOTEN IM KULTUR- UND SPORTBEREICH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Das sich ändernde Klima verlangt ein Überdenken der bisherigen Angebote im Bereich Kultur und Sport in der Stadt Berlin. Gleichzeitig werden neue Perspektiven eröffnet, die durchaus positiv auf das Sport-, Freizeit- und Kulturangebot wirken. Beispiele sind:</td>
</tr>
<tr>
<td></td>
<td>- In warmen Wintern ist es möglich, einen Teil der sportlichen Aktivitäten aus den Hallen in den Außenraum zu verlagern, was die Auslastung der Sporthallen und Veranstaltungsräume minimiert.</td>
</tr>
<tr>
<td></td>
<td>- Eine grundsätzliche Verlängerung der Saison für eine kulturelle Nutzung des Außenraums führt langfristig zu einer Verbesserung und Erweiterung des Angebotes, verbunden mit einer entsprechend gesteigerten Inanspruchnahme des Angebotes, sowohl durch Berliner Bürger/-innen, als auch durch Berlin-Besucher/-innen.</td>
</tr>
<tr>
<td>Wirkung</td>
<td>- Gesundheitliche Schäden durch Hitze werden vermindert</td>
</tr>
<tr>
<td></td>
<td>- Saisonverlängerung bei Outdoor-Sport</td>
</tr>
<tr>
<td></td>
<td>- Erweiterung und Ergänzung des Kulturangebotes im Außenraum</td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>Überlastung der Sporthallen wird reduziert</td>
</tr>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>- Überprüfung von Angebot und Nachfrage</td>
</tr>
<tr>
<td></td>
<td>- Überprüfung von arbeitsschutzrechtlichen Belangen</td>
</tr>
<tr>
<td></td>
<td>- Schrittweise Umsetzung</td>
</tr>
<tr>
<td>Akteure</td>
<td>- VisitBerlin, Kulturprojekte Berlin GmbH, u.a.</td>
</tr>
<tr>
<td></td>
<td>- Land Berlin (Kultur, Sport)</td>
</tr>
<tr>
<td></td>
<td>- Landessportbund Berlin</td>
</tr>
<tr>
<td>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</td>
<td>Keine zusätzlichen Kosten</td>
</tr>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>keine</td>
</tr>
<tr>
<td>Relevante Klimaänderung</td>
<td>Temperatur</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
</tr>
</tbody>
</table>

Maßnahmenbeschreibung

Die Maßnahme bezieht sich hauptsächlich auf Open-Air-Veranstaltungen im Sommer. Die Zunahme von anhaltend hohen Temperaturen und Hitzewellen birgt bei diesen Veranstaltungen besonders die Gefahr von Herz-/Kreislaufbelastungen bei Besucher/-innen und/oder Teilnehmer/-innen, aber auch das Wegbleiben der Besucher/-innen aus den genannten Gründen. Eine kostenlose Trinkwasserversorgung und Einrichtungen wie z.B. Sprüh- oder mobile Wasserbecken haben einen positiven Effekt auf die Besucher/-innen und gleichermaßen auf die Veranstalter/-innen.

Daher wird empfohlen, im Rahmen des Genehmigungsverfahrens für (Groß-) Veranstaltungen, z.B. bei der Risikobeurteilung im Rahmen des nach § 43 MVStättV (Muster-Versammlungsstättenverordnung) vorgeschriebenen Sicherheitskonzeptes, einen Temperaturschwellenwert einzuführen, ab dem bestimmte Maßnahmen wie z.B. eine kostenlose Trinkwasserversorgung oder die Bereitstellung von Erfrischungsanlagen durchzuführen sind. Das Trinkwasser könnte beispielsweise von den Berliner Wasserbetrieben zur Verfügung gestellt werden.

Zur Versorgung mit kostenlosem Trinkwasser können auch die Berliner Trinkbrunnen beitragen (BWB 2015, → WW-7).

Wirkung

- Sicherstellung der Gesundheit der Besucher/-innen / Teilnehmer/-innen
- Kein Abbruch der Veranstaltung bzw. Besucherverlust

Nebeneffekte

- Reduzierung der Kosten für Rettungsdiensteinsätze
- Kein Attraktivitätsverlust der Veranstaltung durch die Hitze, was auch zusätzliche Einnahme durch den Verkauf von Essen/Trinken/Sonstigem impliziert

Notwendige Schritte/ Fristigkeit

Festlegung einer Regelung (z.B. Schwellenwert) im Genehmigungsverfahren

Akteure

Veranstalter, Bezirksämter, Berliner Wasserbetriebe, Berliner Feuerwehr

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

- Keine zusätzlichen Kosten für Bezirksamter
- Kosten für Trinkwasser und entgangene Kosten für Trinkwasserverkauf

Konflikte/ Synergien mit Klimaschutz

keine

Kommentare

Literatur:
TKS-3

MARKETINGKONZEPT: KLIMAANGEPASSTER STÄDTETOURISMUS IN BERLIN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Wirkung
Dämpfung der negativen Folgewirkungen vermehrter sommerlicher Hitzespitzen auf den Berlinton Tourismus, Stabilisierung/Steigerung der Touristentzahlen für eine verlängerte Saison.

Nebeneffekte
Image einer klimaangepassten Stadt (z.B. kann mit bestehenden Trinkbrunnen, vielen kühlen Grünflächen, einem Flussbad in der City, fahrradfreundlichen Straßen, Schatten durch Straßenbäume usw. geworben werden). Diese Maßnahme bezieht sich vermehrt auf die Bedürfnisse der Berliner Tourist/-innen, von denen jedoch auch die Bürger/-innen profitieren können.

Notwendige Schritte/Fristigkeit
Konzepterstellung und Klärung der Maßnahmenumsetzung

Akteure
- VisitBerlin, Tourismusverband,
- Land Berlin (Wirtschaft, Umwelt)

Finanzierung (Mittelbedarf/Fördermöglichkeiten)
Möglich wäre ein Wettbewerb ähnlich „Start Tourism UP!“ durch Senatsverwaltung für Wirtschaft, Technologie und Forschung (SENWTF 2015)

Konflikte/Synergien mit Klimaschutz
keine

Kommentare
Literatur:
TKS-4

BERÜCKSICHTIGUNG DER TOURIST/-INNEN ALS VULNERABLE GRUPPE IM KATASTROPHENSCHUTZ

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung

Schäden der menschlichen Gesundheit werden verringert

Nebeneffekte

k. A.

Notwendige Schritte/ Fristigkeit

- Überprüfen der Mehrsprachigkeit von den Katastrophenschutz betreffenden Informationen (Schilder, Durchsagen usw).
- Personal wie z.B. Einsatzkräfte sollten als Mindestanforderung die englische Sprache beherrschen

Akteure

Land Berlin (Stadtentwicklung, Umwelt, Wirtschaft)

Finanzierung

(Mittelbedarf/Fördermöglichkeiten)

Kosten für Schilder und Durchsagen: hoch

Konflikte/Synergien mit Klimaschutz

keine

Kommentare

Überschneidung mit dem HF Gesundheit- & Bevölkerungsschutz

TKS-5

EMPFEHLUNG ZUR EINRICHTUNG BZW. NACHRÜSTUNG VON DRAINAGESYSTEMEN ZUR OBERFLÄCHENENTWÄSSERUNG BEI AUBENSPORTANLAGEN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Die Berliner Sportvereine zählten Mitte 2015 einen Mitgliederrekord. Fußball gehört zu den beliebtesten Sportarten und zählt auch die meisten Mitglieder (Interview Hahn, AFOK-Endbericht teil II,

Um auch langfristig den Rasensport möglich zu machen und der großen Nachfrage gerecht zu werden, müssten Empfehlungen zum Nachrüsten ausgesprochen, möglicherweise auch Förderungen angeboten werden. Zumindest für geplante Rasensportanlagen sollte der Einbau eines Drainagesystems verbindlich sein und auch in den Kosten berücksichtigt werden.

Wirkung	Bespielbarkeit des Sportrasens wird gesichert; Rasenflächen als Kaltluftentstehungsgebiete werden gesichert
Nebeneffekte	Vereinskultur bleibt erhalten; Sport wichtig für Jugend und Integration
Notwendige Schritte/ Fristigkeit	Standortanalyse (welche Rasensportplätze leiden besonders unter Starkregen), Kosten-Nutzen-Abschätzung,
Akteure	Land Berlin (Sport), Landessportbund
Finanzierung (Mittelbedarf/ Fördermöglichkeiten)	Mind. 20.000-50.000 € pro Anlage (je nach Art und Umfang des Umbaus; vgl. NDR 2015 und VESPERMANN 2012), Zuschüsse vom Landessportbund verfügbar
Konflikte/ Synergien mit Klimaschutz	keine
Kommentare	Literatur:
10.1 Maßnahmenblätter

10.1.9 Bildung

BILDUNGSEINRICHTUNGEN FÜR DEN KLIAMWANDEL BAULICH ERTÜCHTIGEN.

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Wirkung

Durch AG-Arbeit und Aktionsprotokoll werden schrittweise die Klimafolgen-Schwachpunkte und der Handlungsbedarf der Gebäude und Außenanlagen des Bildungssektors erfasst und durch die Aufnahme ins Schulsanierungsprogramm schrittweise behoben.

Nebeneffekte

k.A.

Notwendige Schritte/ Fristigkeit

Integration von Anpassungsmaßnahmen ins Schulsanierungsprogramm Aufgabenerweiterung der AG „Statuserhebung/ Sanierungsbedarf“ Schulen bestimmen „Kümmerer“ Schulinspektion legt Anpassungskriterien fest

Akteure

Schul- und Bauämter der Bezirke, Land Berlin (Bildung, Umwelt), Schulinspektion, Fachleute aus dem Gesundheits-, Architektur- und Landschaftsplanungsbereich, Schulleitungen.

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Konflikte/ Synergien mit Klimaschutz

Förderung von Schulgärten und anderer Lern- und Erfahrungsorte des Klimawandels.

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

Maßnahmenbeschreibung

Wirkung

Nebeneffekte

Erhöhung der Aufenthaltsqualität im Außenbereich, Beitrag der Schulen zur „Schwammstadt“-Strategie. Beitrag zur Bildung für Nachhaltigkeit.

Notwendige Schritte/Fristigkeit

Workshop Schulgärten (1-2 im ersten Jahr); Leitfaden: 2 Jahre; Umstellung Förderung: maximal 2 Jahre.

Akteure

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Schulgärten besitzen neben ihrer pädagogischen auch eine positive städtiklimatologische Funktion. Ihre Anlage kann daher zukünftig auch durch Mittel des Sondervermögens Infrastruktur für die wachsende Stadt (SIWA) sowie durch das Schul- und Sportanlagensanierungsprogramm (SSSP) gefördert werden.

Konflikte/Synergien mit Klimaschutz

keine

Kommentare

BIL-3

ANPASSUNG DER (VOR-) SCHULORGANISATION

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Wenn es vor allem in den Sommermonaten in Zukunft merklich heißer wird, muss die Organisation des Bildungsablaufs vor allem in Schulen und Vorschuleinrichtungen überprüft werden, weil hier besonders vulnerable Gruppen längere Zeit verbringen. Der Begriff der Schulorganisation bezieht sich hier auf die räumliche und zeitliche Durchführung des Unterrichts bzw. der Betreuung (Speise- und Trinkpläne, etc.). Mittels Leitlinien als Handreichung und Notfallplänen soll sich auf zu erwartende klimatische Extremereignisse eingestellt werden. Trinken soll auch während des Unterrichts grundsätzlich erlaubt sein.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wirkung	Verbesserung der Gesundheit der Schüler/-innen.
Nebeneffekte	Erlernen von Gestaltungs-/ Handlungskompetenz im Anpassungsbereich.
Akteure	Land Berlin (Bildung, Gesundheit). Bildungsverwaltung zusammen mit den Schulämtern der Bezirke lassen Leitlinien und Notfallpläne für extreme Hitze erstellen und verteilen sie.
Finanzierung (Mittelbedarf/ Fördermöglichkeiten)	Bildungsverwaltung übernimmt die Kosten der Erstellung der Leitlinien und Notfallpläne, die mit maximal ca. 10.000,- € veranschlagt werden.
Konflikte/ Synergien mit Klimaschutz	keine

BIL-4

SCHULEN ALS ORGANISATIONSKERNE DES ERFahrungsauStauchS zu anPassungsmaßnahmen im KieZ.

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Verbunden mit Maßnahme BIL-3 sollten Schulen insgesamt zu „Brückenorten“ zwischen Bildung und Stadtentwicklung werden. Sie liegen in ihren Kiezen und haben aufgrund des hohen Anteils einer lokalen Schülerschaft gleichsam natürliche Verbindungen, und sie können umgekehrt Impulse geben, um das Gelernte auch ansatzweise in die nahe Fläche zu bringen. Formate wie Einschulungsfeiern, Elternabende, Schulausflüge oder Tage der offenen Tür bieten sich an, um damit zu beginnen. Lokale Klimaschutzinitiativen, aber auch Organisationen des Naturschutzes könnten angesprochen werden, um die Austauschbeziehungen zu stärken.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

271
<table>
<thead>
<tr>
<th>Wirkung</th>
<th>Ausstrahlung der Bildungsinhalte zum Anpassungsthema in den Kiez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebeneffekte</td>
<td>Schulen/ Kinder werden zu Multiplikatoren des Themas.</td>
</tr>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>Kurzfristig: Aktivierung der Schulen durch gemeinsame Initiative der betroffenen Senatsverwaltungen (SenStadtUm, SenBJW), Einbeziehung des Kompetenznetzwerkes (vgl. Maßnahme BIL-6); mittelfristig: Verstetigung.</td>
</tr>
<tr>
<td>Akteure</td>
<td>Schulen in Zusammenarbeit mit Akteuren im Kiez</td>
</tr>
<tr>
<td>Finanzierung (Mittelbedarf/ Fördermöglichkeiten)</td>
<td>Kein zusätzlicher Mittelbedarf</td>
</tr>
<tr>
<td>Konflikte/ Synergien mit Klimaschutz</td>
<td>keine</td>
</tr>
</tbody>
</table>

BIL-5

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkung</td>
<td>Bessere Verankerung des Themas Klimawandel in den Lehrplänen und damit in den übergreifenden wie Fachkompetenzen der Schüler/-innen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>k.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Notwendige Schritte/ Fristigkeit | Nutzung der verwaltungsinternen Vernetzung (Bildung, Umwelt) zur Klimabil...
|
- Einspeisung von Fachdiskursen (Klimabil dung, BNE) in die Rahmenlehrpläne
- Fachtagung „Klimabildung als Bildung für Nachhaltigkeit an Berliner Schulen“ (mit Formaten für Praxisbeispiele)
- Kontinuierliches Aufgreifen von Fachdiskursen und guten Praxisbeispielen durch begleitendes Netzwerk (vgl. Bil-6).
- Kurz- bis mittelfristig

Akteure

Land Berlin (Bildung, Umwelt), Klimabil dungs-Netzwerke; Wissenschaft, Lehrkräfte

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)

Konflikte/ Synergien mit Klimaschutz

Keine

Kommentare

BIL-6

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkung</td>
<td>Klimaanpassung wird besser im Berliner Bildungssystem, speziell bei innovativen Projekten verankert.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>Positive Bezüge zum BNE-Prozess (Bildung für nachhaltige Entwicklung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notwendige Schritte/ Fristigkeit</td>
<td>Berücksichtigung von Klimaanpassung im BEK-Bildungsnetzwerk, z.B. durch die Ansprache geeigneter Personen sowie die Kriteriengestaltung bei der Projektförderung. Beginn sofort; Entwicklung ansonsten parallel zu den BEK-Maßnahmen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akteure</td>
<td>Land Berlin (Umwelt) sorgt dafür, dass das Thema Anpassung in das vom BEK vorgeschlagene Netzwerk Klimabil dung eingebracht und auch im Rahmen der Mittelvergabe für Projektverstetigung berücksichtigt wird.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finanzierung (Mittelbedarf/Fördermöglichkeiten)

Maßnahme bedarf keiner zusätzlichen, über das BEK-Netzwerk hinaus gehenden Mittel (PHK-13 und 14 dort zusammen: 280.000-350.000 € pro Jahr bis 2020)

Konflikte/Synergien mit Klimaschutz

Synergien durch gemeinsame Verankerung mit Klimaschutz im BEK-Netzwerk

BIL-7

VERANKERUNG VON KLIMAANPASSUNG IM UNTERRICHT

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
</table>

| Wirkung | Nachhaltige Verankerung des Klimathemas im Berliner Bildungssystem |

| Nebeneffekte | k.A. |

Notwendige Schritte/ Fristigkeit

Akteure

Land Berlin (Bildung), Landesinstitut für Schule und Medien Berlin-Brandenburg (LISUM); Umweltverwaltung als Fachberatung.

Finanzierung (Mittelbedarf/Fördermöglichkeiten)

Land Berlin (Bildung). Kosten werden als niedrig eingeschätzt, da kein zusätzliches Personal und auch kaum zusätzlicher Verwaltungsaufwand erfordert wird.

Konflikte/Synergien mit Klimaschutz

keine
BIL-8 EINBINDUNG DER VOLKSHOCHSCHULEN ALS ORTE DER KLIMA-AUFKLÄRUNG

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnahmenbeschreibung</td>
<td>Die Volkshochschule ist als Ort der Weiter- und Erwachsenenbildung optimal geeignet, interessierten Bürger/-innen das Know-how in Sachen Klimaanpassung in themenbezogenen Kursen näherzubringen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirkung</td>
<td>Nutzung der Erwachsenenbildung für die Klimaanpassung, Kompetenzsteigerung bei Einwohnerschaft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>k.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akteure</td>
<td>Land Berlin (Bildung), Gesellschaft zur Förderung der Volkshochschulen in Berlin e.V., Leitung der 12 VHS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finanzierung/Mittelbedarf/Fördermöglichkeiten</td>
<td>Land Berlin (Bildung), Mittelaufwand Tagung ca. 10.000,-€.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konflikte/Synergien mit Klimaschutz</td>
<td>k.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIL-9 FÖRDERUNG VON BILDUNGS-AKTIONEN MIT EXTERNEN PARTNER/-INNEN

<table>
<thead>
<tr>
<th>Relevante Klimaänderung</th>
<th>Temperatur</th>
<th>Niederschlag</th>
<th>Wind</th>
<th>Übergreifend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkung</td>
<td>Stärkung der Verbindungen zwischen Bildungssektor und Stadtgesellschaft zum Themenfeld Klimawandel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebeneffekte</td>
<td>k.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notwendige Schritte/ Fristigkeit
SenStadtUm nutzt seine Kontakte und Instrumente (z.B. die Klimaschutzvereinbarungen mit Unternehmen), um Partner aus Wirtschaft und Gesellschaft für Bildungsprojekte zu gewinnen. Außerdem prüfen SenStadtUm und SenBJW, ob sich OPP-Modelle oder andere Formen der gemischten Finanzierung öffentlicher Vorhaben im Bildungsbereich anwenden lassen.

Akteure
- Land Berlin (Umwelt, Bildung), Unternehmen, Umweltverbände und andere NROs

Finanzierung (Mittelbedarf/ Fördermöglichkeiten)
- Externe Partner:

Konflikte/ Synergien mit Klimaschutz
- keine
10.2 Glossar

- **Albedo**: (lateinisch von *albus*, „weiß“) ist ein Maß für das Rückstrahlvermögen (Reflexionsstrahlung) von nicht selbst leuchtenden Oberflächen. Je höher die Albedo, desto stärker ist die Rückstrahlung, desto weniger Strahlung wird absorbiert und desto geringer tritt ein Aufheizen der Oberfläche auf.

- **Algenblüte**: Plötzliche, massenhafte Vermehrung von Algen oder Cyanobakterien (Blaualgen) in einem Gewässer. Meist bedingt durch erhöhten Nährstoffeintrag, mindert die A. den Lichteinfall und verbraucht mehr Sauerstoff im Gewässer.

- **Anpassungskosten**: Monetäre und nicht-monetäre Kosten, die durch die Ergreifung von Maßnahmen zur Anpassung an den Klimawandel entstehen.

- **AOSIS**: (engl.: *Alliance of Small Island States*), Bündnis von ca. 40 kleiner Insel- und niedrig liegender Küstenstaaten auf der ganzen Welt, die ähnlich Entwicklungsaufgaben haben und sich ähnlichen Klimafolgen ausgesetzt sehen, insbesondere dem Anstieg des Meeresspiegels.

- **Ausgleichs- und Ersatzmaßnahmen**: Gemäß BNatSchG hat der Verursacher von Eingriffen in Natur und Landschaft unvermeidbare Beeinträchtigungen durch Maßnahmen des Naturschutzes und der Landschaftspflege auszugleichen (Ausgleichsmaßnahmen) oder in sonstiger Weise zu kompensieren (Ersatzmaßnahmen).

- **Bias**: Ein Ausdruck aus der Statistik, der die Differenz (Verzerrung) zwischen dem Erwartungswert und dem zu schätzenden Objekt bezeichnet.

- **Bodendegradierung**: Dauerhafte oder irreversible Veränderung der Strukturen und Funktionen von Böden, die durch physikalische und chemische oder biotische Belastungen entstehen. Bei landwirtschaftlichen Böden ist Ertragsverlust die Folge, bei anderen die Einschränkung von Ökosystemdienstleistungen.

- **Citizen Science-Projekt**: Wissenschaftsvorhaben mit Bevölkerungsbeteiligung.

- **Dehydrierung**: In der Humanmedizin bezeichnet Dehydrierung einen Flüssigkeitsmangel, der auftritt, wenn der menschliche Körper vermehrt Flüssigkeit verliert, ohne ausgleichend Flüssigkeit aufzunehmen. Das Durstgefühl ist bereits als körperliches Signal einer negativen Wasserbilanz zu interpretieren.

- **Entsiegelung**: Rückgängigmachung der Versiegelung.

- **Exposition**: Die Exposition z.B. eines Sektors in Bezug auf den Klimawandel/ ein bestimmtes Klimasignal beschreibt, wie stark der Sektor dem Klimawandel ausgesetzt ist.

- **Extensive Dachbegrünung**: Naturnahe Begrünungen mit geringem/ keinem Pflegebedarf (aus Moosen, Gräsern u.ä.).

- **Extinktion**: Biolog. Fachbegriff für das Aussterben einer Art; der Zustand, in dem die Population einer Art durch das Aussterben aller Nachkommen Null beträgt.
Flächenpool: Sammlung von potenziellen Ausgleichsflächen, auf denen zukünftige Eingriffe durch geeignete Maßnahmen kompensiert werden können.

Graue Infrastruktur: Bezeichnung für die herkömmliche, funktionsgebundene Infrastruktur (z.B. Regenwasserkanäle), die in verschiedenen Bereichen gegenwärtig durch die leistungsfähigere, kostengünstigere Grüne Infrastruktur ergänzt bzw. ersetzt wird.

Grundwasserneneubildung: Beschreibt den Zugang von infiltriertem Wasser (z.B. aus Niederschlag) zum Grundwasser und ist ein wichtiges Maß für die natürliche Regenerationsfähigkeit der Grundwasserressourcen.

Grüne Infrastruktur (auch: blau-grüne Infrastruktur): ein Netzwerk natürlicher und naturnaher Flächen mit unterschiedlichen Umweltmerkmalen, das mit Blick auf die Bereitstellung eines breiten Spektrums an Ökosystemdienstleistungen angelegt ist und bewirtschaftet wird, z.B. begrünte, dezentrale Versickerungs-mulden; siehe auch Graue Infrastruktur.

Hitzestress. „Durch Hitze bedingte Belastung des menschlichen, tierischen oder pflanzlichen Organismus mit negativem Einfluss auf den Stoffwechsel, insbesondere auf den Wasserhaushalt (Gefahr der Austrocknung). Bei Menschen und Tieren ist zudem das Herz-Kreislaufsystem betroffen. Hitzestress stellt vor allem für Risikogruppen wie ältere Menschen oder Kinder eine ernste gesundheitliche Gefahr dar und vermindert allgemein die Leistungsfähigkeit.“ Quelle: UBA, KomPass.

Humanbioklimatischer Ansatz. Analyse der Wirkungen des Wetters auf das Wohlbefinden und die Gesundheit des Menschen.

Inhalationsallergen: (auch: Aeroallergene), natürlich vorkommende Stoffe (wie Pollen, Hausstaubmilben etc.) die bei immer mehr Menschen durch Abwehrreaktionen ihres Immunsystems allergische Beschwerden hervorruft.

Intensive Dachbegrünung (auch: „Dachgarten“): eine tendenziell aufwendige Begrünung (wie Stauden, Sträucher, Bäume), die vielfältige Nutzungen erlaubt und einen relativ hohem Pflegeaufwand (Wasser, Nährstoffe) aufweist.

Invasive Arten: Im Naturschutz werden die gebietsfremden Arten als invasiv bezeichnet, die unerwünschte Auswirkungen auf andere Arten, Lebensgemeinschaften oder Biotope haben.

Jährlichkeit: die Wiederkehrwahrscheinlichkeit von Naturereignissen bezogen auf ein Jahr, gemessen wird in 1/a („pro Jahr“). Werden andere Zeiteinheiten zugrunde gelegt, dann Spricht man von „Wiederkehrintervall“.

Klimaplastischer Wald: Leitbild, das die kleinräumige Vielfalt der standörtlichen Bedingungen nutzt, um Baumarten unterschiedlicher waldeuropäischer und damit klimatischer Herkunft miteinander in Wechselwirkung zu bringen und so nachhaltige Wälder zu entwickeln. Ökologische Plastizität bezeichnet dabei die Eigenschaft von Wäldern, sich angesichts von sich dauerhaft verändernden klimatischen Bedingungen (aufgrund des Klimawandels) strukturell selbst zu organisieren (JENSEN/ HOFMANN/ POMMER et al. 2007).

Level-II-Dauerbeobachtung: EU-weite ökologische Dauerbeobachtung von Umwelt- und Waldzustandskenngrößen im Waldökosystem.

Makrophyten: Botanischer Begriff für Pflanzen, die mit dem bloßen Auge sichtbar sind (Gegenbegriff: Mikrophyt).

Monitoring: Überbegriff für die (Dauer-)Beobachtung, Überwachung, systematische Erfassung bestimmter Systeme oder Prozesse mittels verschiedener Methoden.

Morbidität: Epidemiologischer Begriff für die Krankheitshäufigkeit bezogen auf eine bestimmte Bevölkerungsgruppe.

Naturverjüngung: Forstwirtschaftlicher Begriff, der die Entwicklung eines neuen jungen Baumbestands durch selbständige Saat der Bäume beschreibt.
Neobiota: Nicht-heimische Tier- (Neozooen) oder Pflanzenarten (Neophyten), die erst durch den Einfluss des Menschen in ihre derzeitigen Ausbreitungsgebiete gelang sind (z.B. Götterbaum, Riesenbärenklau).

Ökokonto: Instrument aus dem Naturschutz, das einen Pool zu Kompensationszwecken geeigneter Maßnahmen beschreibt, die bereits vor einem Eingriff durchgeführt werden.

Ökologische Amplitude: Wirkungsbreite eines Umweltfaktors, innerhalb dessen ein Organismus gedeihen kann.

Ökosystemdienstleistung (engl.: Ecosystem Services): Direkter und indirekter Nutzen, den der Mensch aus funktionierenden Ökosystemen zieht.

Pathogene. Krankheitserreger mit negativen Einflüssen auf die menschliche Gesundheit (Humanpathogene) oder die heimischen Wild- und Nutztiere (Tierpathogene).

Potenzielle Schäden: monetäre und nicht-monetäre Verluste, die durch den Klimawandel auftreten würden, wenn es zu keiner Anpassung käme.

RCPs: Im 5. Sachstandsbericht des IPCC kamen die „Repräsentativen Konzentrationspfade“ (engl.: Representative Concentration Pathways - RCPs) zur Anwendung. Repräsentativ sind die Pfade, weil sie für eine größere Menge von konkreten Emissionspfaden (Szenarien) stehen. Die Zusatzangabe der Zahl verweist auf eine gegenüber früheren Sachstandsberichten neu in die Pfadbezeichnung aufgenommene Metrik, die den anthropogenen Strahlungsantrieb (gemessen in Watt pro m2) des Jahres 2100 im Vergleich zu dem vorindustriellen Antrieb von 1850 benennt. RCP8.5 steht z.B. für einen Strahlungsantrieb von 8,5 W/m2 im Jahre 2100.

REMO: Dynamisches regionales Klimamodell. Weiterentwicklung des für Wettervorhersagen verwendeten Modells des DWD.

Resilienz: Die Fähigkeit eines Sozial- oder Ökosystems, externen Störungen oder Schocks zu widerstehen, also z.B. nach kürzerer oder längerer Zeit seine Funktionen wieder aufzunehmen und seine Struktur zu erhalten.

Rückversicher: Versicherungsorganisationen, die die sog. Erstversicherer (Versicherer für Unternehmen und private Haushalte) gegen große Risiken (z.B. Naturkatastrophen) absichern. Rückversicherer sind damit die „Versicherungen der Versicherungen“.

Sommersmog. Als Sommersmog (auch Photosmog, Ozonsmog oder LA-Smog) bezeichnet man die Belastung der bodennahen Luft (Smog) durch eine hohe Konzentration von Ozon und Peroxidoxiden.

Treibhausgas, Treibhausgaskonzentration: Treibhausgase sind strahlungsbeeinflussende gasförmige Stoffe in der Luft, die zum Treibhauseffekt beitragen und sowohl einen natürlichen (natürlicher Treibhauseffekt) als auch einen anthropogenen Ursprung (anthropogene globale Erwärmung) haben können. Neben Wasserdampf sind Kohlendioxid (CO$_2$), Methan (CH$_4$), Distickstoffmonoxid (N$_2$O) sowie Fluorchlorkohlenwasserstoffe (FCKW) die wichtigsten Treibhausgase.

Vegetationsperiode: Auch Wachstumszeit, ist diejenige Zeitspanne des Jahres, während der die klimatischen Gegebenheiten Pflanzenwachstum zulassen.

Waldumbau: Forstwirtschaftliche Maßnahme, die auf eine schnelle Veränderung der Baumartenzusammensetzung und Altersverhältnisse hin zu mehr Naturnähe abzielt.

Wasserrahmenrichtlinie (WRRL): Europäische Richtlinie, die zum Ziel hat, die europäischen Oberflächengewässer in einen guten chemischen und ökologischen Zustand zu bringen.

WETTREG: Von der Firma Climate & Environment Consulting Potsdam GmbH entwickelte Wetterlagentabulierte Regionalisierungsmethode, bzw. statistisches regionales Klimamodell.
10.3 Literatur

I Einleitung

1.1 Klimawandel und Anpassung als Herausforderung für Berlin

Polizei Berlin, Unfallstatistik; Online: https://www.berlin.de/polizei/aufgaben/verkehrssicherheit/verkehrsunfallstatistik/; Zugriff: 04.01.2016.

10.3 Literatur

1.2 Das AFOK im Kontext der Berliner Klimapolitik

1.3 Methodisches Vorgehen bei der Erarbeitung des AFOK

2 Klimawandel und Klimaszenarien

3 Regionalisierte Klimaszenarien für Berlin 2050 und 2100

4 Sektorale Sensitivitäten und Vulnerabilitäten

4.1. Einführung

4.2 Vulnerabilitäten und Maßnahmen in den Handlungsfeldern

4.2.1 Menschliche Gesundheit, Bevölkerungsschutz

Literatur

LAGeSo (Hrsg.) (2012): Lyme-Borreliose: Aktuelle Entwicklungen bei den nach Landesrecht in Berlin gemeldeten Fällen im Vergleich mit anderen Bundesländern Epidemiologische Informationen Deutschland für das Land Berlin 286
287

4.2.2 Gebäude, Stadtentwicklung, Grün- und Freiflächen

10.3 Literatur

4.2.3 Wasserhaushalt, Wasserwirtschaft

4.2.4 Umwelt und Natur

10.3 Literatur

SenStadtUm [Senatsverwaltung für Stadtentwicklung und Umwelt] (o.J. c): Großes Waldweideprojekt Deutschlands wird erlebbar;

293
10.3 Literatur

4.2.5 Energie- und Abfallwirtschaft

10.3 Literatur

Vattenfall (2011): Technische Daten Stromverteilnetz Berlin (Stand 09.12.2011); Power-Point-Präsentation. 40 Seiten.

4.2.6 Industrie, Gewerbe und Finanzwirtschaft

10.3 Literatur

4.2.7 Verkehr, Verkehrsinfrastruktur

10.3 Literatur

IHK Berlin (2015): Tourismusreport Herbst 2015, Dok Nr. 21914

4.2.9 Bildung

10.3 Literatur

5 Synergien und Konflikte mit dem Klimaschutz

6 Ausgewählte Kosten- und Nutzenaspekte

7 Monitoring-Konzept

8 Kommunikation

Capellaro, M.; Storm D. (2015a): Abschlussbericht: Evaluation von Informationssystemen zu Klimawandel und Gesundheit, Anpassung an den Klimawandel: Evaluation bestehender nationaler Informationssysteme (UV-Index,
Literatur

Hitzewarnsystem, Pollenflug-und Ozonvorhersage) aus gesundheitlicher Sicht – Wie erreichen wir die empfindlichen Bevölkerungsgruppen? nicht veröffentlicht, zu beziehen über die Fachbibliothek Umwelt des Umweltbundesamtes, Signatur UBA-FB 002079.

